
Bring Your Own Kafka
for SQL Server CDC
with Onehouse

2

Contents

Architecture Walkthrough ...4

Steps ..5

SQL Server ..5

Confluent Cloud ...6

Onehouse ... 10

Validation .. 13

Conclusion .. 14

3

Introduction

Change data capture (CDC) is a methodology in data management that enables the real-time

replication of data across different systems. A common use case for CDC is to keep a downstream

analytics database, such as a data lakehouse, in sync with an operational database.

Onehouse offers end-to-end replication for database sources such as:

1. PostgreSQL and MySQL, with direct support, including both on-premises and cloud-based deploy-

ments.

2. SQL Server, using bring your own Kafka implementations.

In this guide, we’ll look into one of the ways to implement a fully-managed CDC from a SQL Server

database to a data lakehouse using Confluent Cloud’s managed Kafka Connect, Confluent Schema

Registry, and Onehouse. Optionally, you can use Apache XTable (Incubating) to also use Apache

Iceberg-formatted files and/or Delta Lake-formatted files.

Note: This guide describes using Onehouse Cloud in a BYOC (Bring Your Own Cloud) deployment model.

Onehouse Cloud is a managed service that handles all the ugly details for you. If you are an open-source

Hudi user, consider Onehouse LakeView (free) and Onehouse Table Optimizer (managed service), each

of which handle some of the ugly details for you.

4

Architecture Walkthrough

Source Database Replication + Messaging Layer Data Processing Layer Storage Layer

Debezium

Debezium offers a set of distributed services

that capture row-level changes in your database,

so your applications can see and respond to

those changes. Debezium records all row-level

changes committed to each database table in a

transaction log.

Apache Kafka

Kafka, a powerful distributed event streaming

platform, plays a crucial role in implementing

CDC, by efficiently handling high-throughput

data streams. In a CDC architecture, Debezium

and Apache Kafka are coupled; Debezium

captures database row-level changes as events

and publishes them to Kafka topics.

Confluent Cloud

Confluent Cloud is a fully managed Kafka service,

further simplifying streaming by offering a

scalable and reliable infrastructure for real-time

data integration. In this architecture, Confluent

Cloud manages Debezium, Apache Kafka, and

Schema Registry deployments.

Onehouse

Onehouse is a fully managed Universal Data

Lakehouse platform that deploys and manages

data infrastructure components, enabling full

automation of streaming pipelines that deliver

data from your source systems to your target

applications. With Onehouse, you can easily

ingest and transform data from any source,

manage it centrally in a data lakehouse, and

query or access it with the engine and table

format of your choice.

5APNA CASE STUDY

In this architecture, Onehouse manages provisioning infrastructure required for data processing,

which includes Apache Hudi and Apache Spark.

Together, these technologies empower organizations to seamlessly capture, process, and analyze

data changes, enhancing their ability to make data-driven decisions and maintain data consistency

across various applications and services.

Steps

SQL Server

In your SQL Server database, run the following command to enable CDC for the current database. This

procedure must be executed for a database before any tables can be enabled for CDC in that database.

USE databaseName;

EXEC sys.sp_cdc_enable_db;
GO

Next, enable CDC for the specified source table in the current database. When a table is enabled for

CDC, a record of each data manipulation language (DML) operation applied to the table is written to

the transaction log. The CDC process retrieves this information from the log and writes it to change

tables that are accessed by using a set of functions.

EXEC sys.sp_cdc_enable_table @source_schema = ‘dbo’, @source_name = ‘tableName’,
@role_name = NULL, @supports_net_changes = 0;
GO

https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/enable-and-disable-change-data-capture-sql-server?view=sql-server-ver16#enable-for-a-database
https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/enable-and-disable-change-data-capture-sql-server?view=sql-server-ver16#enable-for-a-table

6

Confluent Cloud

Deploying Connector

To deploy the Microsoft SQL Server CDC Source V2 (Debezium) Connector in Confluent Cloud, follow

the steps provided in Confluent’s documentation. The V2 Connector automatically creates a topic

which can be directly consumed by target applications such as Onehouse.

Adding Schema to Schema Registry

Let’s say your source table, products, uses a schema such as the one below in your SQL Server

database.

 {
 "name": "id",
 "type": "long"
 },
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "quantity",
 "type": "long"
 }

Create a schema named productSchema in Confluent Schema Registry by following this documentation

with the schema below.

{
 "fields": [
 {
 "default": null,
 "name": "after",
 "type": [
 "null",
 {
 "fields": [
 {
 "name": "id",
 "type": "long"
 },
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "quantity",
 "type": "long"
 }
],

https://docs.confluent.io/cloud/current/connectors/cc-microsoft-sql-server-source-cdc-v2-debezium/cc-microsoft-sql-server-source-cdc-v2-debezium.html#using-the-ccloud-console
https://docs.confluent.io/platform/current/control-center/topics/schema.html#create-a-topic-value-schema

7

 "name": "After",
 "type": "record"
 }
]
 },
 {
 "default": null,
 "name": "before",
 "type": [
 "null",
 {
 "fields": [
 {
 "name": "id",
 "type": "long"
 },
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "quantity",
 "type": "long"
 }
],
 "name": "Before",
 "type": "record"
 }
]
 },
 {
 "name": "op",
 "type": "string"
 },
 {
 "name": "source",
 "type": {
 "fields": [
 {
 "name": "change_lsn",
 "type": "string"
 },
 {
 "name": "commit_lsn",
 "type": "string"
 },
 {
 "name": "connector",
 "type": "string"
 },
 {
 "name": "db",
 "type": "string"
 },

8

 {
 "name": "event_serial_no",
 "type": "string"
 },
 {
 "name": "name",
 "type": "string"
 },
 {
 "name": "schema",
 "type": "string"
 },
 {
 "name": "sequence",
 "type": "string"
 },
 {
 "name": "snapshot",
 "type": "string"
 },
 {
 "name": "table",
 "type": "string"
 },
 {
 "name": "ts_ms",
 "type": "long"
 },
 {
 "name": "version",
 "type": "string"
 },
 {
 "name": "transaction",
 "type": "string"
 }
],
 "name": "Source",
 "type": "record"
 }
 },
 {
 "name": "ts_ms",
 "type": "long"
 },
 {
 "name": "schema",
 "type": {
 "fields": [
 {
 "name": "fields",
 "type": {
 "items": {
 "fields": [
 {
 "name": "name",
 "type": "string"
 },

9

 {
 "name": "optional",
 "type": "boolean"
 },
 {
 "name": "type",
 "type": "string"
 },
 {
 "name": "version",
 "type": "long"
 }
],
 "name": "Field",
 "type": "record"
 },
 "type": "array"
 }
 }
],
 "name": "Schema",
 "type": "record"
 }
 }
],
 "name": "Payload",
 "type": "record"
}

10

Onehouse

Create a Source

Create a Confluent Cloud

Kafka source in Onehouse by

adding your Broker endpoint

URL, API Key and API Secret

In the same screen, provide

your Schema Registry Server

endpoint, Key and Secret

values, and then click Create

source.

11

• From the Stream Captures screen, pick the appropriate Name and Sync Frequency while selecting

the right source, i.e. products-source.

• Also select the desired write mode. For this CDC example, we expect updates to the source data-

base to be propagated to the target table, so we select Mutable as the write mode. (Read more

about Mutable vs Append-only write mode here.)

• Next, select the right schema name, i.e. productSchema, in the Source Data Schema field, then

choose Convert data from CDC format in the Add a transformation field.

• Next, choose appropriate Data Quality Validation and Starting Offsets while selecting the id

column as the record key and the commit_lsn column as the precombine field, assuming you’re

working with a schema as highlighted in the Adding Schema to Schema Registry section.

https://docs.onehouse.ai/docs/product/ingest-data/stream-captures#write-mode

12

• Then proceed to select the appropriate data lake, database, and Catalog, and select Create

Stream Capture.

• If your goal is to query the target table in Delta Lake or Apache Iceberg table formats, you can cre-

ate an Apache XTable catalog by following the instructions here. As Onehouse can do multi-catalog

synchronization simultaneously, all your warehouses and query engines can query the tables man-

aged by a single pipeline.

https://docs.onehouse.ai/docs/product/ingest-data/catalogs/onetable

13

Validation
Once your pipeline starts running, you’ll be able to see the records populated in your

configured data lake.

14

Conclusion
In this guide, we have implemented an end-to-end CDC architecture to capture changes from your

source SQL Server database through Debezium with Confluent Cloud Kafka, and created a streaming

pipeline with Onehouse to create a fully interoperable data lakehouse.

If you want to learn more about Onehouse and would like to give it a try,
please visit the Onehouse listing on the AWS Marketplace or contact
gtm@onehouse.ai.

https://aws.amazon.com/marketplace/pp/prodview-zw7rtdegdab5g
mailto:gtm%40onehouse.ai?subject=

	Architecture Walkthrough
	Steps
	SQL Server
	Confluent Cloud
	Onehouse
	Validation

	Conclusion

