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Introduction
Businesses are producing and leveraging data at an unprecedented rate. The amount of data 
produced is growing at a compound annual rate of nearly 20% and is expected to surpass 180 
zettabytes created per year . As data volumes grow, new ways of processing and querying 
the data have emerged, such as

 Apache Spark (Spark for brevity) for processing data at massive scale with distributed 
computin

 Flink for processing data in real-time with event stream
 Data warehouses for querying data fast by using methods like advanced optimizations and 

cachin
 Federated SQL query engines to query data across disparate sources like databases, data 

lakes, and warehouses
 Real-time analytics engines for querying data even faster with techniques like indexing and 

local storage architectures
 Specialized compute frameworks, optimized for training machine learning models and powering 

data science.



The separation of storage and compute found in the cloud has encouraged the development of 
compute engines - platforms for processing data in various ways. All of the above technologies 
can be seen as compute engines, some special-purpose, others with a wide range of capabilities. 



Innovation continues to accelerate, with AI startups more than doubling their share of the total 
venture funding up to  – and much of that going to the data infrastructure that 
powers AI and analytics.



To keep up with the rapid evolution of these technologies, organizations must build a future-proof 
data architecture that allows them to maintain high-quality data while ensuring that their data is 
not locked into a single vendor ecosystem or . Too many organizations have 
invested in building a data platform, only to find out years later that costs have risen 
astronomically as the business demands new data use cases.



This whitepaper defines the universal data lakehouse architecture, a next-generation approach 
for managing data that leverages the best features of the data lake, such as open-source data 
formats and the use of object storage, while supporting incremental updates like a data 
warehouse does, with cross-engine cross-cloud interoperability. The data lakehouse optimizes 
data pipeline costs, simplifies data preparation, and makes data universally accessible for a wide 
range of compute engines and use cases. Countless industry leaders have built their data 
infrastructure around the lakehouse concept, including , , , , , , 

, , and .



With the universal data lakehouse architecture, your organization can achieve the following 
benefits

 Unify data around one source of trut
 Bring the best possible compute engine to each of your diverse workloads
 Empower your organization with high data qualit
 Reduce costs by combining cost-efficient storage and comput
 Achieve faster performance and fresher data by processing data incrementall
 Keep data private on your own cloud account
 Avoid vendor lock-in by storing data in open source formats within your own cloud bucke
 Simplify access control and data sharing

by 2025

26% in 2023

compute engine

Uber GE TikTok Amazon Walmart Disney
Twilio Robinhood Zoom
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https://www.statista.com/statistics/871513/worldwide-data-created/
https://news.crunchbase.com/ai-robotics/us-startup-funding-doubled-openai-anthropic-2023/
https://www.onehouse.ai/glossary/compute-engines
https://www.uber.com/blog/ubers-lakehouse-architecture/
https://aws.amazon.com/blogs/big-data/how-ge-aviation-built-cloud-native-data-pipelines-at-enterprise-scale-using-the-aws-platform/
http://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance
https://aws.amazon.com/blogs/big-data/how-amazon-transportation-service-enabled-near-real-time-event-analytics-at-petabyte-scale-using-aws-glue-with-apache-hudi/
https://medium.com/walmartglobaltech/lakehouse-at-fortune-1-scale-480bcb10391b
https://www.youtube.com/watch?v=mFpqrVxxwKc
https://www.youtube.com/watch?v=PyATuQDixdQ
https://s.apache.org/hudi-robinhood-talk
https://aws.amazon.com/blogs/big-data/how-zoom-implemented-streaming-log-ingestion-and-efficient-gdpr-deletes-using-apache-hudi-on-amazon-emr/


Beyond introducing the universal data lakehouse architecture, this whitepaper also provides 
strategic guidance on building your data infrastructure. By the end, you will learn

 The history of the data warehouse, data lake, and data lakehouse – and how this led to the 
universal data lakehouse architectur

 How to build your data integration and ingestion to optimize costs, meet data freshness goals, 
ensure data privacy, and enable interoperabilit

 How to prepare your data in a way that ensures data quality, saves on costs and manual efforts 
through amortization, and processes data incrementall

 How to choose the right compute engine for any use case across analytics and reporting, data 
science, real-time analytics, and more
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Defining the Universal Data Lakehouse
The universal data lakehouse architecture is a new innovation in data infrastructure that is being 
adopted by organizations on the cutting edge of technology and is now moving toward the 
mainstream. Every data engineering practitioner and IT manager should understand the data 
lakehouse and its benefits, while looking for opportunities to deploy the lakehouse productively in 
their organization. 

The data warehouse, the data lake, and the data lakehouse
Before diving into the universal data lakehouse architecture, it’s essential that you first 
understand the differences between a data warehouse, a data lake, and a data lakehouse.

The Data Warehouse
For decades, the data warehouse has served as 
the de facto database for analytics, offering 
capabilities that include ACID transactions, 
strict schema enforcement, and SQL support. 
Unlike transaction-oriented databases such as 
MySQL or PostgreSQL, which use row-oriented 
data formats, data warehouses store data in 

 to efficiently process common 
analytics query patterns such as aggregations. 
Over the last few years, data warehouses have 
moved from on-premises into the cloud, 
separating storage and compute to enable 
flexibility and elastic scaling.
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SQL Exec

Local

Cache

Node A

SQL Exec

Local

Cache

Node C

SQL Exec

Local

Cache

Node B

Compute

Optimizer Metadata Txn Manager

Platform Services

Cloud Storage

https://www.geeksforgeeks.org/difference-between-row-oriented-and-column-oriented-data-stores-in-dbms/


03

Building a Universal Data Lakehouse

Data Lake Storage

Parquet, Orc, CSV, XML, JSON, ... files

Cloud Storage

SQL Engines Data Science/ML Libraries The Data Lake
While data warehouses primarily serve analytics 
use cases like business intelligence, data lakes 
emerged to cover the warehouse’s weak points, 
such as handling unstructured data and 
processing large-scale data workloads with 
cost-efficient object storage and decoupled 
compute to process data at scale. However, data 
lakes come with their own challenges: cloud 
object storage is append-only with no updates 
to data in place, it is difficult to manage query 
performance, and data quality is a nightmare to 
maintain.

The Data Lakehouse
In 2016, the very first data lakehouse 

 to fill the gaps left by the 
warehouse and the lake. The lakehouse blends 
the database-like capabilities of the warehouse 
with the flexibility, cost-efficiency, and 
scalability of the lake. The lakehouse achieves 
this by adding a transaction layer over the raw 
file storage in the lake. The lakehouse is built 
atop open-source table formats like 

, , and  (Linux 
Foundation), enabling full data ownership and 
portability - an advantage over the vast majority 
of data warehouses, which store data in 
proprietary formats.

was 
created at Uber

Apache 
Hudi Apache Iceberg Delta Lake

SQL Engines Data Science/ML Libraries

Data Management Ingestion Tools

Table Format Transaction Log

Metadata Concurrency Control

Transactions Layer

Data Lake Storage

Parquet, Orc, CSV, XML, JSON, ... files

Cloud Storage

https://www.uber.com/blog/apache-hudi-graduation/
https://www.uber.com/blog/apache-hudi-graduation/
https://hudi.apache.org/
https://hudi.apache.org/
https://iceberg.apache.org/
https://delta.io/
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Why do we need the data lakehouse? 

Before the creation of the data lakehouse, data 
warehouses and data lakes fulfilled separate 
requirements

 The data warehouse handled low-
throughput, mutable workloads like database 
replicatio

 The data lake handled high-throughput, 
append-only workloads like event streams

Data Warehouse

Data Lake

Merge capability, 

Low-throughput

No Merge capability, 

Low-throughput

Merge capability, 

High-throughput

No Merge capability, 

High-throughput

Mutable workloads

Append-only workloads

Low-

throughput


data

High-

throughput


data

In most pre-lakehouse data architectures, organizations ended up maintaining both a data 
warehouse and data lakes. To consolidate data across sources, they would periodically copy data 
between the data warehouse and data lake, creating complex pipelines and multiple copies of 
identical or similar data. The data warehouse with its fast queries serves business intelligence (BI) 
and reporting use cases, while the data lake, with its support for unstructured storage and low-
cost compute, serves use cases for data engineering, data science, and machine learning.

In the diagram above, you see an example of the , used across two separate 
workflows for mutable transactional data and immutable data from event streams. The typical 
“modern data stack” is born by replicating operational data into a raw “bronze” layer on a cloud 
data warehouse, using point-to-point data integration tools. This data is then subsequently 
cleaned, audited for quality, and prepared into a “silver” layer. Then a set of ETL jobs transform 
this data into facts, dimensions, and other models to ultimately create a “gold” data layer, ready to 
power analytics and reporting. 

medallion architecture

https://www.onehouse.ai/glossary/medallion-architecture
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Sustaining the architecture above across both a data warehouse and data lake is challenging, 
expensive, and error-prone. Periodic data copying between the lake and the warehouse leads to 
stale and inconsistent data. Governance becomes a headache for everyone involved, as access 
control is split between systems and data deletion (think GDPR) must be managed on multiple 
copies of the data - including copies housed in immutable storage. Not to mention, teams are on 
the hook for each of these complex pipelines, and ownership can quickly become murky.



This introduces many challenges for an organization
 Vendor lock-in: The source of truth for high-value operational data is often a proprietary data 

warehouse, which creates lock-in points.
 Expensive ingestion and data prep: While data warehouses offer merge capabilities for mutable 

data, they lack the ability to quickly and cost-effectively ingest data from upstream databases 
or data streams. The warehouse's premium compute engine is optimized for high-performance 
serving of analytics at the gold layer. This expensive compute engine is often also employed 
for commodity workloads such as data ingestion and data preparation at the bronze and silver 
layers. This typically results in ballooning costs for workloads that could easily have run on 
cheaper, purpose-built compute layers.

 Wasteful data duplication: As new use cases emerge, organizations duplicate their work across 
lakes and warehouses, wasting storage and compute resources. For example, the same data is 
ingested/copied once for analytics and once for data science, wasting engineering and cloud 
resources. Considering that organizations also provision multiple environments such as 
development, staging, and production, the compounded costs across the entire infrastructure 
can be staggering

 Poor data quality: Individual teams often reinvent the foundational data infrastructure for 
ingesting, optimizing, and preparing data in a piecemeal fashion. These efforts have 
frustratingly slow ROI or fail altogether due to a lack of resources, putting data quality at risk 
across the organization, as data quality is only as strong as the weakest data pipeline.

 Data governance challenges: The costs associated with deleting data to comply with 
regulations such as GDPR, and CCPA are incurred multiple times across each copy of the same 
data flowing in through a separate entry point. Furthermore, the risks of a mistake increase as 
multiple copies of the same data are persisted.



Uber, facing these same challenges, introduced  (now called the data 
lakehouse) in 2016 to unify their data into a single layer with the strengths of both the data lake 
and the data warehouse.

the transactional data lake

This innovation finally made it possible to 
consolidate high-throughput streaming 
workloads with mutable workloads (like 
database replication) in a single storage layer. 
Now reaching maturity, with thousands of 
companies using it, the lakehouse offers an 
opportunity to shed old paradigms and the 
challenges that came with them, unlocking a 
superior approach to building data platforms.
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https://www.uber.com/blog/apache-hudi-graduation/
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Introducing the universal data lakehouse architecture
The universal data lakehouse architecture puts a data lakehouse at the center of your data 
infrastructure, giving you a fast, open, and easy-to-manage source of truth for all your analytics 
workloads - business intelligence, data science, and more.

By adopting the universal data lakehouse architecture, organizations can overcome the previously 
insurmountable challenges of the old, disjoint architecture that continually copies data between 
the lake and the warehouse. The thousands of organizations already using both data lakes and 
data warehouses can replace that bifurcated architecture with a data lakehouse for the bronze 
and silver layers, while continuing to use one or more data warehouse platforms for downstream 
query serving.



With this architecture, your organization can reap the following benefits:

Unifying Data
The universal data lakehouse architecture uses a data lakehouse as the source of truth inside 
your organization’s low-cost object storage, with data stored in open source formats. Additionally, 
the lakehouse can handle the ever-increasing scale of upstream databases (such as complex 
distributed databases like CockroachDB).

Ensuring Data Quality
This universal storage layer provides a convenient entry point to perform data quality checks, 
schematize semi-structured data, and enforce data contracts between data producers and 
consumers. Data quality issues can be contained and corrected within the bronze and silver 
layers, ensuring that downstream tables are always built on fresh, high-quality data. This 
streamlining of the data flow simplifies the architecture, reduces cost by moving workloads to 
cost-efficient compute, and eliminates duplicate compliance efforts for requirements such as 
data deletion under GDPR.
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Reducing Costs
Since both operational data from databases and high-scale event data are ingested and 
processed across a single bronze and silver layer, ingestion and data prep can run just once on 
low-cost compute. We have seen impressive examples of multi-million dollar savings from cloud 
data warehouse costs by moving ingestion and  to this architecture on a data 
lakehouse.



Keeping data in open formats enables all data optimizations and management costs to be 
amortized across all three layers, instead of each compute engine imposing its own redundant 
storage optimizations, bringing dramatic cost savings to your data platform.

ELT workloads

Faster Performance
The universal data lakehouse improves performance in two ways. First, it’s designed for mutable 
data, rapidly absorbing updates from change data capture (CDC), streaming data, and other 
sources. Second, it opens the door to moving workloads away from big, bloated batch processing 
to an incremental model for cost-efficiency and fresher data for analytics. Uber saved ~80% in 
overall compute cost by using Hudi for incremental ETL. They simultaneously improved 
performance, data quality, and observability.

Bringing Freedom to Choose Compute Engines
Unlike a decade ago, today’s data needs don’t stop at traditional analytics and reporting. Data 
science, machine learning, and streaming data are mainstream and ubiquitous across Fortune 500 
companies, mid-sized companies, and startups alike. Emerging data use cases such as deep 
learning and LLMs are bringing a wide variety of new compute engines optimized for each 
workload independently. The conventional wisdom of picking one warehouse or lake engine up 
front throws away many of the advantages that the cloud offers; the universal data lakehouse 
makes it easy to spin up the right compute engine on demand for each use case. 



The universal data lakehouse architecture makes data accessible across all major data warehouses 
and data lake engines and integrates with any data catalog – a major shift from the prior approach 
of coupling data storage with a single compute engine. This architecture enables you to 
seamlessly build specialized downstream gold layers across BI & reporting, machine learning, data 
science, and countless additional use cases, using the engine that is the best fit for each unique 
job. For example, Spark is great for data science workloads, while data warehouses are battle-
tested for traditional analytics and reporting. Beyond technical differences, pricing and the move 
to open source play a crucial role in which compute engines an organization adopts for each use 
case.



For example, Walmart  on Apache Hudi, ensuring that they could easily 
leverage new technologies in the future by storing data in an open source format. They use the 
universal data lakehouse architecture to empower data consumers to query the lakehouse with a 
wide range of technologies, including Hive, Spark, Databricks, Presto, Trino, BigQuery, and Flink. 

built their lakehouse

Taking Back Ownership of Your Data
All the source-of-truth data are held in open source formats in the bronze and silver layers within 
your organization’s cloud storage buckets. Data stays in your account across the entire lifecycle, 
so you can avoid using proprietary data ingestion tools that create security risks by moving data 
out of your account.

https://www.onehouse.ai/blog/optimize-cloud-costs-by-migrating-elt-from-cloud-data-warehouses-to-data-lakehouses
https://www.uber.com/blog/ubers-lakehouse-architecture/
https://medium.com/walmartglobaltech/lakehouse-at-fortune-1-scale-480bcb10391b
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Accessibility of data is dictated by you – not by an opaque third-party system with vendor lock-
in. This architecture gives you the flexibility to run data services inside the organization’s cloud 
networks (rather than in vendors’ accounts), to tighten security, and to support highly regulated 
environments.



Additionally, you’ll be free to either manage data using open data services or to buy managed 
services, avoiding points of lock-in data services.

Simplifying Access Control
With data consumers operating on a single copy of the bronze and silver data within the 
lakehouse, access control becomes much easier to manage and enforce. The data lineage is 
clearly defined, and teams no longer need to manage separate permissions across multiple 
disjoint systems and copies of the data.

Implementing and Optimizing the Universal Data 
Lakehouse
The universal data lakehouse architecture offers the opportunity to transformationally improve 
your data infrastructure and achieve all of the idealistic goals above. However, the architecture is 
only as good as its implementation.



The rest of this whitepaper offers tactical advice for successfully building your data platform with 
the universal data lakehouse architecture. We will dive deep into each of the key components
 Data ingestio
 Data preparatio
 Selecting compute engines for your downstream analytics use cases



By understanding the best practices and common pitfalls for each of these components, you will 
be well-equipped to lead your team through a successful data transformation. Furthermore, these 
best practices can be adopted incrementally to provide value without completely overhauling 
your data infrastructure.

Best practices for data integration
Data ingestion is the process of extracting data from source systems such as a database (eg. 
MongoDB or PostgreSQL), event stream (eg. Kafka or Pulsar), or file storage (eg. Amazon S3 or 
Google Cloud Storage) and loading it into the data lakehouse.



There are two popular approaches to ingesting data for analytics
 Extract, Load, Transform (ELT): Source data is ingested into raw tables (the bronze layer, in the 

medallion architecture), then transformed into separate cleaned and filtered tables (the silver 
layer

 Extract, Transform, Load (ETL): Source data is ingested directly into cleaned and filtered tables



Choosing the right approach depends on your business needs. ETL reduces upfront costs by 
storing less data. ELT maintains a copy of the raw data, which can be useful in case you later need 
to backfill data due to new requirements or issues with the pipeline. This is safer than relying on 
source systems like Kafka which may not maintain the data indefinitely.
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Whether you use ETL, or ELT, or both, ingesting data presents challenges, that you can solve with a 
combination of the universal data lakehouse architecture and leveraging the right technologies. 
You should consider the following when building an ingestion pipeline using the universal 
lakehouse architecture:

Optimize Costs
Data integration can become extremely expensive as you bring more data into your analytics 
systems more frequently. Often, costs will become so prohibitive that organizations are forced to 
reduce the frequency of their data syncs, leading to stale data that is hours behind the source.



A common pitfall for ingestion is using a tool that charges by data volume (on top of your 
compute costs) to move your data. For example, Fivetran charges a fee per monthly active row on 
top of the compute costs that you pay to actually write the data. When you ingest more data 
with Fivetran, you increase your compute costs in your downstream system (warehouse or 
lakehouse) while also paying Fivetran for the additional rows. As an alternative, you can use open 
source data integration tools like  and  or storage systems with built-in data 
ingestion to save on the additional costs. We offer this at Onehouse ( ), and you can 
find other offerings on the market like .



Another driver of cost inflation is using a system that can’t process data incrementally. Old-school 
data lakes on parquet files only support batch processing which requires rewriting entire files, 
partitions, or tables when new data arrives. This is extremely inefficient, leading to expensive and 
slow data ingestion. Instead, you should use a system that processes data incrementally, ensuring 
you only write data that has changed and avoiding costly  (ie. writing more data 
than necessary).



Uber, for example,  by processing trip data incrementally every 15 
minutes, moving away from their antiquated batch system:

Airbyte Kafka Connect
see example

Redshift’s Zero-ETL

write amplification

saved ~80% in compute costs

Uber leveraged Apache Hudi’s  (MoR) tables, which are especially efficient for 
update-heavy workloads by virtue of writing data incrementally at the file level, rewriting only the 
files that have changed:

Merge on Read

https://github.com/airbytehq/airbyte
https://kafka.apache.org/documentation/#connect
https://www.onehouse.ai/blog/instantly-unlock-your-cdc-postgresql-data-on-the-lakehouse-using-onehouse
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html
https://en.wikipedia.org/wiki/Write_amplification
https://www.uber.com/blog/ubers-lakehouse-architecture/
https://www.onehouse.ai/blog/comparing-apache-hudis-mor-and-cow-tables-use-cases-from-uber-and-shopee
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When selecting your storage layer for analytics, ensure that it can write data incrementally in an 
efficient manner for your current and future workloads. The best way to evaluate these systems is 
to run benchmarks with realistic workloads and monitor the total costs for data ingestion.

Overcome Data Freshness Challenges
Modern data projects require fresh data to serve use cases that run in near real-time. However, 
you  can only read data as fast as the slowest point in your pipeline. Data ingestion is a critical 
point in the pipeline, as large volumes of data moving from source systems into analytics systems 
can cause bottlenecks. If the data in your lakehouse is delayed by one hour due to slow ingestion, 
your “real-time” machine learning applications will be delayed by at least an hour as well.

Data

ingestion Storage

Queries

1 hour 5 sec

Data teams spend significant time and energy (and often money) on optimizing query speed. This 
effort is important but does not speed up the end-to-end pipeline if data ingestion is a 
bottleneck.



Similar to the challenge with costs, failing to process data incrementally is a common ingestion 
latency bottleneck. By processing data incrementally, you can write faster and more efficiently to 
your storage system. In the same , the data team was able to decrease the pipeline 
run time by 50% and also decrease the SLA by 60% with Hudi’s incremental writes.

Uber example

https://www.uber.com/blog/ubers-lakehouse-architecture/
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As your data volumes grow, data freshness can be seriously impacted especially for update-heavy 
workloads such as change data capture (CDC). When incoming records are used to update an 
existing table, the table has to be scanned for each incoming record to determine if a row needs 
to be updated or simply appended to the table. Scanning the table can be a costly and time-
intensive activity that scales linearly with the growth of your table over time.



Apache Hudi provides a unique approach to breaking this performance bottleneck with a new 
feature called the record-level index (RLI). RLI keeps and builds an index with unique keys. When a 
batch of incoming records needs to be processed, the RLI allows efficient point lookups versus full 
table scans. Comprehensive benchmarks have shown >70% performance improvements when 
employing RLI vs a traditional global simple index. 

Openness and Universal Interoperability for Your Data
It’s enticing to use managed platforms for data integration, which are often closed source. For 
example, many organizations use Fivetran (a black box, closed source integration tool) to ingest 
data into Snowflake (which uses a proprietary table format). This can be costly and invites 
challenges down the road as you become locked into these proprietary vendor ecosystems.



In a proprietary ecosystem, interoperability is controlled completely by the vendor – you’re only 
free to use only the tools that play well with their products. Migrations are a challenge as well. 
When you find, and want to move to, other tools that better suit your organization’s growing 
needs, you must rebuild your ingestion infrastructure from the ground up.



If you were designing a car, you would be wise not to use parts that are dependent on a single 
supplier, who may go out of business or dramatically raise prices. Instead, you would want to use 
parts that are standard across the industry and can be seamlessly replaced by other 
manufacturers as needed. Similarly, organizations should build their end-to-end data 
infrastructure on open source technologies instead of locking data into proprietary systems.



Here are some examples of open and proprietary systems for data movement and storage:

Open Proprietary

Data Movement  Apache Kafk
 Apache Pulsa
 Airbyte

 Fivetra
 Hevo Dat
 Matillion

Data Storage  Apache Hud
 Apache Iceber
 Delta Lake (Linux Foundation
 Apache Parquet

 Snowflak
 BigQuer
 Redshif
 Azure Synapse

The universal data lakehouse architecture involves ingesting your data directly into an open 
source format such as Apache Hudi, Apache Iceberg, or Delta Lake. Data should stay in open 
source systems along the way by using event stream technologies like Apache Kafka or Apache 
Pulsar. This approach ensures you don’t have a single point of vendor lock-in for your critical data 
ingestion pipelines.



Using open source data lakehouse formats also ensures that you maintain interoperability to 
query the data in downstream compute engines including Spark, Flink, Databricks, Snowflake, 
Redshift, Trino, Presto, Dask, and many more.
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Furthermore, you can reap the interoperability benefits of all three data lakehouse table formats 
(Hudi, Iceberg, and Delta) by using , an open source project supported by Onehouse, 
Microsoft, Google, and many others. OneTable makes it possible to maintain a single copy of your 
data, along with metadata from all lakehouse table formats, to ensure complete interoperability 
across compute engines.

OneTable

Ensure Data Privacy
Security, privacy, and compliance are vital characteristics of any data architecture. Your 
architecture should be well-designed to prevent , prevent , 
and ensure compliance with complex and fast-changing . Introducing third-
party vendors who take control of your data into their environments can 

 and require you to put a large degree of trust in the hands of suppliers.



The tools you choose to use for data ingestion are a crucial part of your infrastructure, since 
ingestion will touch all of your data and set the stage for how the data is stored. In the vendor 
market today, a majority of  require you to export your data out 
of your cloud accounts and through their networks.



In such cases, data exported out of your virtual private cloud (VPC) is processed and stored in 
external third-party systems, becoming susceptible to vulnerabilities. With recent security events 
that occurred at places like  from third-party tool CircleCI, 

 from third-party tool Envoy, and any company becoming vulnerable who was 
depending on third-party tool . It is increasingly hard to justify why data should leave 
your security boundaries. 

unauthorized access data exfiltration
privacy regulations

increase the scope of 
your infosec boundary

data ingestion / integration tools

Datadog suffering a breach Atlassian 
suffering a breach

 LastPass

You can ensure data privacy by keeping data within your own VPC throughout ingestion and 
storage. You can run open source ingestion tools like Airbyte or Kafka Connect directly in your VPC 
with compute services like EMR for AWS or DataProc for Google Cloud.

https://www.onetable.dev/
https://www.cdnetworks.com/cloud-security-blog/unauthorized-access-is-the-biggest-threat-to-cloud-security/
https://cloud.google.com/docs/security/data-loss-prevention/preventing-data-exfiltration
https://www.reuters.com/legal/legalindustry/us-data-privacy-laws-enter-new-era-2023-2023-01-12/
https://www.pwc.com/us/en/services/trust-solutions/digital-assurance-transparency/vendor-cybersecurity-risk.html
https://www.pwc.com/us/en/services/trust-solutions/digital-assurance-transparency/vendor-cybersecurity-risk.html
https://portable.io/learn/best-etl-tools
https://www.secureblink.com/cyber-security-news/datadog-rpm-signing-key-exposed-in-circle-ci-hack
https://www.bleepingcomputer.com/news/security/atlassian-data-leak-caused-by-stolen-employee-credentials/
https://www.bleepingcomputer.com/news/security/atlassian-data-leak-caused-by-stolen-employee-credentials/
https://www.theverge.com/2023/2/28/23618353/lastpass-security-breach-disclosure-password-vault-encryption-update
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In , Zoom leveraged open source tools like Kafka, Spark, and Hudi to ingest data into 
the data lakehouse without exposing the data outside of their AWS private cloud.

this example

When evaluating services for data integration or storage, it’s critical to ask if the data ever leaves 
your account - and if so, why - so that you can minimize exfiltration risks.

Best practices for data preparation
Data preparation is the process of transforming raw data into cleaned and filtered tables that are 
ready to be consumed for analytics. It’s essentially the T step in ELT or ETL. Data preparation 
serves as a cornerstone of your data architecture by ensuring that data is high quality and easily 
accessible to power all of your organization’s analytics use cases, from reporting to business 
intelligence to data science to machine learning.



As an organization grows, the breadth of data becomes more complex and the teams producing 
that data become more distributed. New data is produced in different formats and schemas 
evolve, breaking data pipelines that were previously working. Data infrastructure that fails to 
reliably prepare data can take down business-critical analytics systems and lead to middle-of-
the-night, on-call firefighting by data teams.



On the other side, downstream data consumers are constantly pursuing new use cases for the 
data, which often require new data models. These users - data analysts, scientists, and engineers - 
work across disjoint systems such as data warehouses, data science notebooks on ML-optimized 
compute engines, and open source data engineering engines. When the source data is not 
properly prepared early in the pipeline, these stakeholders use their own transformations to 
create new copies of the data. This leads to multiple copies of the data that are poorly maintained 
and duplication of work due to a lack of data discoverability across the organization.



These challenges can be solved by simply preparing data earlier in the lifecycle, using the 
universal data lakehouse architecture. Let’s dive deeper into how to solve these challenges around 
data preparation:

https://aws.amazon.com/blogs/big-data/how-zoom-implemented-streaming-log-ingestion-and-efficient-gdpr-deletes-using-apache-hudi-on-amazon-emr/
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Ensure Data Quality
Data quality has become an increasingly important and popular topic, evidenced by communities 
like , which racked up nearly 10,000 members in its first year of existence. The 
rise of machine learning has also made data quality more important, as 

. The interest in data quality is driven by a combination of the importance 
and the challenging nature of ensuring high-quality data.



Failing to centralize data quality checks and transformations is one of the biggest drivers of data 
quality issues. In the example below, we see what happens when data consumers each transform 
their own copy of the raw data:

Data Quality Camp
models are only as good as 

the data powering them

In this example, analyst #1 casts columns to their proper types and drops the buyer_name column 
containing sensitive personally identifiable information (PII). The data scientist performs the same 
casting transformations but fails to drop the buyer_name column, leading to potential privacy 
issues down the road. Lastly, analyst #2 creates another copy of the table and forgets to cast the 
columns, which means that analyst #1’s queries will not work on analyst #2’s table. Instead of 
relying on each data consumer to apply their own transformations, these transformations should 
be applied on a shared copy of the data that can serve as the source of truth:

https://dataproducts.substack.com/p/building-the-data-quality-community
https://hai.stanford.edu/news/data-centric-ai-ai-models-are-only-good-their-data-pipeline
https://hai.stanford.edu/news/data-centric-ai-ai-models-are-only-good-their-data-pipeline
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This model ensures that every data consumer is working on high-quality data, free from privacy 
risks. Furthermore, the data analysts and scientists can now focus on their highest-value work 
rather than spending time on data quality tasks that could be handled upstream.



The universal data lakehouse architecture makes this data quality model possible by allowing you 
to use a single copy of data as the source of truth for the organization. Rather than maintaining 
separate data copies and data quality rules in disjoint systems like a warehouse and data lake, you 
can consolidate the data in the data lakehouse and use any needed compute engine for reading 
the data or deriving aggregate tables for specific use cases.



Another best practice for improving data quality is to filter out bad data in flight before it reaches 
your storage systems. This saves on the overhead of maintaining bad data and ensures that the 
bad data is not accidentally consumed by others in the organization. You can achieve this by 
using a  to  that fails to meet your data quality requirements – 
for example, data with an invalid schema or record values outside of an expected range.



Lastly, you can leverage open source data quality tools like  and  to more 
easily apply data quality validations. Combining this data quality tooling with the universal data 
lakehouse infrastructure is a powerful way to ensure that your organization never has to operate 
with bad data.

dead-letter queue quarantine data

Great Expectations Deequ

Model the Data
Data Modeling is one of the most important data preparation activities you need to consider early 
in the lifecycle of building out your data platform. Some aspects of data modeling will require you 
to work cross-functionally within your organization, beyond the core data engineering team. Your 
first objective is to align relevant stakeholders in your business to understand what questions 
need to be answered with data and which decisions need to be influenced by data. It is important 
to build a workback plan from there to ensure your physical data model will make an impact on 
your business. That work back plan to your data model will include

 Which data assets you need to create, such as dashboards or machine learning model
 What specific data is required to generate those asset
 How you will collect, organize, and serve the data to those assets

https://www.uber.com/blog/reliable-reprocessing/
https://medium.com/@matt_weingarten/quarantining-in-data-quality-9caf7d996696
https://github.com/great-expectations/great_expectations
https://github.com/awslabs/deequ
https://aws.amazon.com/what-is/data-modeling/
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For example, if you are running a ride-sharing business, you may have a data modeling exercise 
that generates the following work back plan:

Enrich the Data
Data enrichment is the process of enhancing a dataset by merging and adding either first-party 
or third-party data. Enriching your data enables data consumers to answer more questions and 
gain deeper insights, helping them achieve business goals.



Let’s take the example of an organization tracking product sales. The organization ingests sales 
data from an event stream into a table in their analytics system. They maintain information about 
their customers separately in a CRM accessible by the GTM team.  Now, imagine that a data 
science team wants more demographic info about customers in order to predict the potential 
return on ad spend (ROAS) for an upcoming marketing campaign. The data science team cannot 
glean these insights while customer data is siloed away in the CRM.



To empower their data science team, the organization can use their CRM data to enrich their 
source-of-truth data in the data lakehouse:
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In this example, the valuable CRM data is now democratized across the organization, and access 
can be managed in one central layer. We show a denormalized data model above, but the 
organization could reap similar benefits by replicating the CRM data as a table in the lakehouse 
and allowing data consumers to join the data themselves.



As shown in the example above, data enrichment is most effective when done in the early stages 
of the pipeline. This ensures that all downstream tables are automatically updated with the 
enriched data.  is a company that follows this same principle for their data 
infrastructure by enriching data during ingestion into their data lakehouse.



One last consideration when performing data enrichment is to make sure that the data is regularly 
updated. Data quality will suffer if the enriched data is out-of-date. When enriching with data from 
outside of your analytics system, be sure to set up jobs that regularly ingest fresh data. Open 
source data integration tools like  and  can be useful for connecting to 
external systems like a CRM.

Nerdwallet

Airbyte Kafka Connect

Optimize Data Layouts
As you ingest data and form the foundation of your data platform, there are several 
considerations to keep in mind for how to efficiently organize the data layout on storage for 
performance and cost savings. Without planning ahead, the performance of your pipelines and 
queries can quickly decay over time. Examples of data layout optimizations include partitioning, 
indexing, clustering, file-sizing, and cleaning. These layout optimization techniques are usually 
well supported in databases or data warehouses but are non-existent in cloud object storage 
systems such as Amazon S3, Azure Data Lake Storage, and Google Cloud Storage. 



Apache Hudi bridges this gap and brings critical database-like storage layout optimizations to the 
data lakehouse. With Hudi it is easy to choose a . Hudi offers a first-of-its-
kind  for the lake, allowing you to customize depending on your 
workload. By default, Hudi will automatically manage  operations, and  of old 
versions and metadata to reclaim precious storage. Hudi offers advanced sorting techniques that 
allow you to apply multidimensional  algorithms such as .



With these data layout optimization tools, you can achieve performance improvements on the 
order of 100x, which will lead directly to cost savings for your organization.

partitioning strategy
pluggable indexing subsystem

file-sizing cleanup

clustering Z-Order or Hilbert curves

Amortize the Cost and Effort of Data Preparation
Too often, the data preparation work described in this whitepaper is repeated at multiple points in 
the pipeline, leading to a higher total cost of ownership (TCO) for the data system.



The universal data lakehouse presents an opportunity to cut down duplicate data engineering 
efforts and reduce compute costs by amortizing the data preparation work. With this architecture, 
organizations can centralize their data preparation in the bronze and silver layers of a unified data 
pipeline. Data engineers should be responsible for transforming data into consumable 

 with owners who are responsible for the quality and reliability.



This approach helps your team save on compute costs by processing transformations, validations, 
etc. on the data just one time, early on in the pipeline. Furthermore, disjoint teams don’t need to 
waste time performing the same transformations on separate copies of the data – the 
transformed data they need is already available in a centralized data lakehouse. These 
transformations are performed on the lakehouse, enabling you to use cheap bare-metal compute 
instead of processing the data on expensive premium compute engines like a data warehouse:

data 
products

https://aws.amazon.com/blogs/big-data/how-nerdwallet-uses-aws-and-apache-hudi-to-build-a-serverless-real-time-analytics-platform/
https://github.com/airbytehq/airbyte
https://kafka.apache.org/documentation/#connect
https://www.onehouse.ai/blog/knowing-your-data-partitioning-vices-on-the-data-lakehouse
https://www.onehouse.ai/blog/introducing-multi-modal-index-for-the-lakehouse-in-apache-hudi
https://hudi.apache.org/docs/file_sizing/
https://hudi.apache.org/docs/hoodie_cleaner
https://hudi.apache.org/docs/clustering
https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-hilbert-space-filling-curves/
https://sanjmo.medium.com/what-exactly-is-a-data-product-7f6935a17912
https://sanjmo.medium.com/what-exactly-is-a-data-product-7f6935a17912
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Data Prep Data

Warehouse

$$$

Queries Data

Warehouse

Data Prep Data

Lakehouse

$

Queries Data

Waehouse

This example shows how you can run data preparation with low-cost commodity compute on the 
data lakehouse instead of unnecessarily using premium data warehouse compute – all while 
continuing to serve queries with the data warehouse. Organizations like  have already 
adopted this model to achieve significant cost savings.



When performing data preparation, you can leverage tools like  or  that make it easy to 
manage and reuse transformation code for repetitive tasks like parsing JSON, exploding arrays, 
and processing change data capture (CDC) events. These UI-based tools also make it accessible 
for anyone in the data organization to transform and validate data within the data lakehouse 
without having to learn data engineering technologies like Spark or Flink.



Lastly, you can achieve significant cost savings for data preparation by processing data 
incrementally. In the data integration section, we covered the benefits of using incremental 
processing for ingestion. These cost savings and speed enhancements compound when you use 
incremental processing through all stages in your pipeline, ensuring that all raw, cleaned, and 
aggregated tables process only the data that has changed.

Apna

dbt Airflow

Choosing the right compute engines for your use cases
Storing your data in a universally accessible format and storage layer unlocks the ability to mix 
and match various compute engines while operating on a single, high-quality copy of the data. 
This engine flexibility is a powerful capability, as you can now leverage the unique strengths of 
multiple purpose-built engines rather than fitting incorrectly and paying additional cost/
performance costs. Furthermore, new engines are always emerging; locking yourself into one 
vendor ecosystem means you will need to either migrate or miss out on future innovations.



At a high level, choosing the right compute engine unlocks the following benefits
 Cost savings, by choosing the most efficient engine for the workloa
 Deliver the desired query performance for certain workload
 Access to specialized compute engines and libraries (such as machine learning-oriented 

engines
 Decoupled compute from ingestion and data prep commodity workloads; no competing for 

resources or debating the right platform 

https://medium.com/apna-technology-blog/building-data-lakehouse-to-unleash-the-power-of-data-at-apna-960dccbdc618
https://github.com/dbt-labs/dbt-core
https://airflow.apache.org/
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Mixing and matching compute engines has become standard practice in the industry.  For 
example, data from  shows that about 40% of Snowflake customers also use Databricks, and 
about 46% of Databricks customers also use Snowflake. By moving to the universal data lakehouse 
architecture for data ingestion and data preparation, these thousands of companies can be 
saving millions of dollars by not operating on disjoint or copied data between both systems.



When organizations first build their data platform, they don’t intend to end up with multiple 
disparate storage layers. However, as new use cases emerge, such as machine learning, data 
sharing, or real-time queries, organizations are forced to adopt new storage layers because they 
initially stored data in a system that is not interoperable with the ecosystem of compute engines. 
By starting with a universal data lakehouse architecture from the beginning, organizations can 
avoid the future headaches of migrating data, copying pipelines, or managing data across multiple 
disjoint systems.



The next sections provide a broad (but non-comprehensive) overview of compute engines and 
their strengths and weaknesses, alongside examples of how they are used by actual 
organizations. We suggest that you use this as a starting point for your compute engine research; 
however, you will also benefit from running your own analysis and benchmarks. The compute 
engine ecosystem is rapidly evolving, so you may find that functionality and performance change 
dramatically as these engines improve and new engines emerge. Once again, this only emphasizes 
the importance of storing data in an architecture that provides flexibility to add or change 
compute engines over time.

ETR

Analytics & Reporting Use Cases
Analytics and reporting involve the collection, processing, and interpretation of data to generate 
insights for decision-making, often referred to as business intelligence (BI). This function 
leverages real-time and historical data to produce dashboards, charts, and reports that help 
stakeholders understand key business metrics. Analytics and reporting functions are typically 
performed by data analysts and business intelligence professionals.



When choosing a compute engine for analytics and reporting, the following factors are most 
important

 Query speed: Users should be able to get query results fast, allowing them to interactively 
explore the data

 Concurrency: Many users in your organization may be performing analytics at the same time. A 
good engine supports a medium to high level of concurrent queries, and ways to prioritize 
these queries across users/business functions

 Cost: The engine should be able to execute complex queries quickly, by employing state-of-
the-art techniques such as query planning and optimization, to cut down the amount of data 
scanned.



For analytics and reporting use cases, cloud data warehouses and federated SQL Engines (such as 
Trino or Presto) on data lakes are often a good fit. Each option has its own benefits and tradeoffs.

https://siliconangle.com/2023/06/30/connecting-dots-snowflakes-data-cloud-ambitions/#:~:text=A%20new%20data%20stack%20began%20to%20emerge%20last%20decade
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Cloud Data Warehouses
(Snowflake, Redshift, BigQuery, Azure Synapse)

Federated SQL Engines
(Presto, Trino, Dremio)

Benefits

Query speed: Data warehouses serve 
queries fast, typically due to more 
advanced query optimizers and planning 
techniques like statistics maintenance, 
result-set caching, and materialized views.

Data management: Data warehouses are 
built like complete database systems, with 
advanced data management functionality 
such as a built-in catalog and data 
encryption.

Ease of use: Data warehouses often come 
with user-friendly interfaces and are easy 
to set up with features like query 
optimizations, access control, and 
autoscaling available out-of-the-box.

Scalability: High horizontal scalability, 
especially when crunching very high data 
volumes by scaling to 100s or even 1000s of 
machines reading directly from cloud 
storage.

Cost: These engines are typically less 
expensive than data warehouses on a 
dollar-per-core basis for similar queries. 
(Although engines relying on memory as a 
means to accelerate queries could cost 
more.)

Query federation: These engines allow you 
to query data from multiple sources such 
as RDBMS, NoSQL databases, and data 
lakes, enabling a more flexible and 
extensible architecture.

Trade-offs

Cost: Data warehouses are typically more 
expensive than federated SQL Engines. 
Data warehousing costs grow very quickly 
with larger datasets, near real-time ELT 
workloads, and complex ETL jobs.

Vendor lock-in: Data warehouses are 
typically closed-source systems employing 
proprietary formats, making them 
unsuitable for source-of-truth data 
storage due to inherent lock-in.

Scaling: Although most cloud warehouses 
have storage/compute separation, some 
still have local storage architecture that 
can limit the amount of data storage 
available.

Complexity: Although highly flexible, these 
engines may require fine-tuning and 
expertise in data management for optimal 
performance.

Budding ETL support: While they are 
excellent query engines for analytics, they 
are yet to be widely used for creating data 
pipelines that build reports.

Case studies

  uses Azure Synapse data warehouse 
for everything from customer payment 
segmentation to freight and shipping 
anomaly detection.

FedEx

  reported a significant speedup from 
using Snowflake; Home Depot saw similar 
experiences with , while Redshift’s 

 promises to deliver superior 
performance.

Faire

BigQuery
architecture

  serves over 500M queries per day on 
PrestoDB.
Twilio

 operates an exabyte-
scale data lake on Presto and Hudi.
TikTok/ByteDance 

  powers analytics at large companies 
like Netflix and Linkedin.
Trino

https://customers.microsoft.com/en-us/story/1686419413331162973-fedex-azure-synapse-analytics-united-states
https://craft.faire.com/the-great-migration-from-redshift-to-snowflake-173c1fb59a52
https://cloud.google.com/customers/featured/the-home-depot
https://aws.amazon.com/blogs/big-data/amazon-redshift-continues-its-price-performance-leadership/
https://prestodb.io/blog/2022/12/28/presto-at-twilio/
https://www.youtube.com/watch?app=desktop&v=T2E-A-40cSI
https://trino.io/users.html
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Cloud Data Warehouses
(Snowflake, Redshift, BigQuery, Azure Synapse)

Distributed Processing Engines
(Spark, Flink, Hive)

Benefits

Simplicity: Running pipelines on the data 
warehouse itself keeps the data 
architecture simpler since there are fewer 
components in use.

Data management: The same automatic 
data management features can be used to 
manage the tables, reducing time to 
market.

Open: All major distributed processing 
engines are open source and primarily 
optimized on open data formats, which 
makes it easy for pipelines to write data 
once and read many times from different 
engines.

Cost Effective: These engines directly scan 
data from infinitely scalable cloud storage 
from 1000s of nodes to support all shapes 
and sizes of pipelines in one framework, 
from analytical reports to complex ML 
model training.

Resilient: All engines offer high levels of 
resiliency to intermittent failures, handling 
data skews with graceful degradation and 
ensuring that your data pipelines are 
operating round-the-clock, feeding data to 
your teams.

Best-in-class lakehouse support: These 
engines have tight integrations with radical 
new data lakehouse technologies to offer 
new capabilities. For example, Apache Hudi 
combined with Spark or Flink brings 
advanced indexing and incremental queries 
that can speed up pipelines 100x or more.

Data Engineering Use Cases
Data Engineering is the practice of constructing, managing, and optimizing data pipelines, 
including ETL (Extract, Transform, Load) processes. Engineers design and implement the 
architecture needed to collect, clean, transform, and store data so it can be readily used by 
consumers such as data scientists, analysts, and machine learning models.



When choosing a compute engine for data engineering, the following factors are most important
 Cost-Performance: You should choose an engine that balances your job execution speed and 

the cost budget as data volumes and complexity of workloads increase
 Fault tolerance: Fault tolerance is critical for ensuring that data is not lost or corrupted during 

the ETL process failures and ensuring that data pipelines deliver data reliably, without needing 
manual intervention required when a job fails

 Pipeline management: Data engineers work with many use cases, and the use cases are 
constantly expanding. It’s important to choose a versatile engine that boasts a rich ecosystem 
of workflow orchestration and tools such as dbt or Airflow.



There are two broad categories of systems employed for authoring data pipelines, and the table 
below presents a comparison of the approaches in broad strokes.



22

Building a Universal Data Lakehouse

Cloud Data Warehouses
(Snowflake, Redshift, BigQuery, Azure Synapse)

Distributed Processing Engines
(Spark, Flink, Hive)

Benefits

Batch and Streaming Models: Most of 
these engines make it easy to switch from 
running scheduled batch jobs to a more 
streaming/micro-batch architecture with 
just a few lines of code.

SQL + Code: These engines offer powerful 
DataFrame APIs, in addition to customizable 
SQL optimizers across popular programming 
languages. 

Trade-offs

Cost: Data warehouses are primarily 
designed for low-latency query execution 
by scanning less and concurrency 
management. ETL workload patterns are 
very different from analytical workloads 
and costs can increase dramatically for 
large ETLs where the problem is more about 
scanning/crunching data as fast as 
possible. Problems are exacerbated for 
mutable workloads with MERGE statements, 
given that warehouses have been typically 
built with static data in mind. The premium 
you pay for the warehouse compute is 
often more expensive than an engine that 
is purpose-built for ETL.

Pipelines as Code: Data warehouses largely 
rely on SQL for everything and a good 
chunk of data engineers author pipelines in 
code with local test data to ensure data 
quality and maintainability. 

Interoperability: Given proprietary data 
formats are still the primary choice in 
warehouses, the data produced by these 
pipelines cannot easily be exposed to 
other use cases such as data science, so 
duplicate pipelines are required, doubling 
the infrastructure and maintenance costs 
of the pipelines. Data warehouses are 
starting to improve support for external 
open table formats like Hudi, Iceberg, and 
Delta Lake.

Management Overhead: While they bring 
great flexibility, these engines need to be 
paired with data management functionality 
either in open source (e.g. Hudi) or a 
managed service (e.g. Onehouse or 
Databricks) to optimize and track the 
output from underlying tables to these 
pipelines.

Learning Curve: You would need to put 
together a talented team of data engineers 
who already have familiarity, or can learn 
these frameworks quickly, to fully realize 
the benefits above. This is another area 
where managed data lake products like 
Onehouse or EMR help.
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Cloud Data Warehouses
(Snowflake, Redshift, BigQuery, Azure Synapse)

Distributed Processing Engines
(Spark, Flink, Hive)

Case studies

 Instacart spent in total on Snowflake 
over 2021 and 2022, representing 6.3% of 
Instacart’s total  over those 
years.

$56M 

R&D expenses

  reports advantages from automated 
maintenance of the underlying tables with 
Snowflake.

Ramp

 We have seen a large SaaS startup reduce 
their  dramatically by moving their 
compute workloads from a data warehouse 
to Spark or Flink with a Hudi data lakehouse.

ELT costs

 operates data pipelines at Fortune 
1 scale using Spark and Hudi.
Walmart 

 and have reported impressive 
savings from adopting incremental data 
processing to reduce their ETL costs.

Uber  Zoom 

Data Science, Machine Learning, and Artificial Intelligence Use Cases
Data science (DS) focuses on drawing insights and making predictions from data. Data scientists 
use various statistical, mathematical, and programming techniques to analyze data and solve 
complex problems, usually in a way that can influence strategic or operational decisions.



Machine learning (ML) and artificial intelligence (AI) involve building and training algorithms to 
learn from data and make decisions or predictions. In a data organization, ML and AI can automate 
data analysis, improve analytics models, or drive various kinds of automated decision-making 
processes. Deep learning requires the management and processing of large volumes of images, 
videos, text, and other unstructured data, in addition to structured data that data warehouses 
and data lakehouses support. PyTorch and TensorFlow are among the most popular deep learning 
frameworks.



Examples of data science and AI/ML projects include fraud detection to alert security teams, 
predictive maintenance in manufacturing to minimize downtime, and recommendation systems to 
personalize user experiences. Most recently, the AI space has garnered unprecedented amounts 
of attention due to the viability of LLMs in commercial and everyday applications such as ChatGPT.



Some common compute engines employed for DS/AI/ML are , and distributed 
compute engines like Dask and Ray that parallelize Python code and libraries.



This ecosystem is still growing and evolving, and has a high chance of short-term disruption with 
many different types of frameworks emerging that all specialize in their own workloads. With 
compute engine capabilities rapidly expanding in this area, practitioners typically pick the data 
formats first and then add their compute engines of choice. This emphasizes the point that 
storing your data in open and interoperable systems is critical in order to keep up with the DS/ML/
AI landscape, which will rapidly evolve in the next few years. 



When choosing a compute engine for data science, ML, and AI, the following factors are most 
important

 Framework support: Choosing from popular DS/ML/AI frameworks like Pandas, Polars, 
TensorFlow, PyTorch, and Scikit-Learn makes it easier for ML/AI teams to build with their familiar 
tools

 Scalability requirements: You should understand your scalability requirements when choosing 
a compute framework for DS/ML/AI. A highly scalable engine may be necessary when working

Apache Spark

https://www.snowflake.com/blog/snowflake-and-instacart-the-facts/
https://www.sec.gov/Archives/edgar/data/1579091/000119312523221345/d55348ds1.htm
https://www.snowflake.com/en/resources/case-study/ramp-s-automated-personalized-prospecting-drives-25-increase-in-new-business-with-snowflake-dbt-and-hightouch/
https://www.onehouse.ai/blog/optimize-cloud-costs-by-migrating-elt-from-cloud-data-warehouses-to-data-lakehouses
https://medium.com/walmartglobaltech/lakehouse-at-fortune-1-scale-480bcb10391b
https://www.uber.com/blog/ubers-lakehouse-architecture/
https://aws.amazon.com/blogs/big-data/how-zoom-implemented-streaming-log-ingestion-and-efficient-gdpr-deletes-using-apache-hudi-on-amazon-emr/
https://spark.apache.org/
https://www.dask.org/
https://www.ray.io/
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with large volumes of data, while in other cases it may be overkill. For example, if you are training 
ML models, the engine's ability to scale horizontally across multiple nodes and support GPU 
acceleration is vital

 Processing Speed: Real-time prediction use cases such as fraud detection require low-latency 
query response. If you plan to build real-time DS/ML/AI applications, the engine should process 
and infer data in real-time. Additionally, faster processing can help data scientists improve 
their efficiency by delivering quick feedback loops.

Case studies:

 used Dask to reduce ML model training times by 91% with a few months of 
development effor

  uses Ray to train their largest models (including ChatGPT), enabling them iterate at 
scale much faster than they could befor

  replaced Spark with Ray in their ML platform to leverage specialized Python libraries 
and parallelize their ML training workflow

  uses Ray alongside Snowflake and Databricks to handle diverse requirements for 
MLOps

Capital One  

OpenAI

Shopify

Instacart

Stream Processing Use Cases
Stream Processing often refers to real-time computation on data directly as it is produced or 
received. It is typically used to filter, aggregate, or enrich incoming data streams before sending 
them for downstream analysis or initiating some action based on the data. Stream processing 
offers a  to batch processing, by delivering real-time (a few seconds) data 
freshness and a completely incremental processing model that avoids recomputing results to 
achieve real-time performance. Stream processing systems are also great at dealing with unique 
problems like out-of-order and late-arriving data, treating them as first-class constructs in the 
processing model.



Stream processing is often used to denormalize data from upstream databases with normalized 
schema, to aid downstream use cases like warehousing, data science, and real-time analytics, or 
even updating search indexes. Other key use cases for stream processing are fraud and anomaly 
detection, where incoming events can be used to detect spurious patterns and fight spam or 
suspicious user activity. In many cases, stream processing can be employed to simply pre-
process system logs, IoT sensor data, and other high-volume data streams before they are stored 
in a data lake. For example,  streams about 25 GB/s of data using Apache Kafka.



A stream processing system typically consists of streaming data storage (e.g. 
) and a compute engine for stream processing (e.g. 
). 



When choosing a compute engine for stream processing, the following factors are most 
important

 Query speed: When dealing with streaming data, speed is paramount. Choose a compute 
engine with fast end-to-end processing speed to ensure that the engine does not bottleneck 
your pipelines

 State management: Stream processing systems manage intermediate results in their state 
stores, which lets them compute results incrementally as new data arrives. The fault tolerance 
and scalability of the state management play an important role in operating stream processing 
pipelines at the desired SLAs.

great alternative

Pinterest

Apache Kafka, 
Apache Pulsar Apache Flink, Spark Streaming, 
Kafka Streams

https://www.capitalone.com/tech/machine-learning/dask-and-rapids-data-science-and-machine-learning-at-capital-one/
https://towardsai.net/p/machine-learning/scaling-ai-with-ray
https://shopify.engineering/merlin-shopify-machine-learning-platform
https://www.instacart.com/company/how-its-made/griffin-how-instacarts-ml-platform-tripled-ml-applications-in-a-year/
https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/
https://www.confluent.io/blog/running-kafka-at-scale-at-pinterest/
https://kafka.apache.org/
https://pulsar.apache.org/
https://flink.apache.org/
https://spark.apache.org/streaming/
https://kafka.apache.org/documentation/streams/
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Stream processing routinely needs data from longer-term storage, such as a data lake or data 
warehouse, to bootstrap the historical state. For example, a job that counts the number of Uber 
trips per city needs historical data bootstrapped first so it can apply the incoming events 
correctly on top and produce accurate counts. Thus, using frameworks like Flink or Spark with 
open data lakehouse systems offering built-in support for streaming data, such as Hudi, is very 
important to ensure streaming pipelines are easy to build, modify, and operate. Finally, while 
stream processing unlocks exciting opportunities such as real-time dashboards and applications, 
it typically comes at a higher cost than batch processing due to  containers. Emerging 
techniques such as  offer the ability to bring stream processing 
benefits in a data lakehouse with on-demand compute.

always-on
incremental data processing

Case studies:

 used Apache Flink to build their real-time search infrastructure due to Flink’s agility, 
consistency, low latency, and cost-efficiency

 found that Flink consistently offered lower latency at higher throughputs than Spark 
for their near real-time business intelligence. Flink’s rich programming model also made it easier 
for them to implement complex semantics and handle out-of-order events.

Alibaba 

Zalando 

Real-time Analytics Use Cases
Real-time analytics is the process of analyzing data as it is created, often within milliseconds to 
seconds after the data is generated. Real-time analytics systems are typically fed by upstream 
stream processing pipelines. Put together, this allows organizations to respond to emerging 
trends or issues immediately. Real-time analytics are important for use cases where speed is 
critical, such as for fraud detection, real-time IoT device monitoring, or live inventory management.



Real-time analytics engines can also serve as a speed layer on top of your data lakehouse. You 
can incrementally ingest and prepare data in the lakehouse, then use the real-time engine to 
process data that require sub-second queries for data consumers. Within your organization, real-
time analytics might be consumed by data analysts, data scientists, or even by production 
applications.



Real-time analytics have skyrocketed in popularity in recent years, with many new compute 
engines emerging. Popular compute engines for real-time analytics include open source engines 
(eg. , and ), proprietary engines (eg. ), 
and specialized engines (eg.  for time series data and  for search use cases).



When choosing a compute engine for real-time analytics, the following factors are most 
important

 Query speed: The engine should be capable of executing queries with sub-second speed for 
real-time analytics. Most real-time engines prefer a local storage architecture so as to 
overcome cloud storage/access bottlenecks to support these ultra-low latencies - much like 
operational databases

 Support for high query concurrency: Real-time analytics may require an unbounded volume of 
queries per second, so the real-time engine should be able to parallelize many queries

 Purpose-specific functionality: Depending on your real-time use case, you may benefit from a 
system that offers specialized features, such as a time-series database, search indexes, or 
specialized handling of high-dimensionality data.



Note that real-time analytics come at a cost – you’ll generally pay more for these specialized 
engines than for the general-purpose analytics engines under the Analytics & Reporting section. 

Apache Druid, Apache Pinot, ClickHouse StarRocks Rockset
InfluxDB Elasticsearch

https://www.oreilly.com/content/ubers-case-for-incremental-processing-on-hadoop/
https://www.onehouse.ai/blog/getting-started-incrementally-process-data-with-apache-hudi
https://www.ververica.com/blog/blink-flink-alibaba-search
https://engineering.zalando.com/posts/2016/03/apache-showdown-flink-vs.-spark.html
https://druid.apache.org/
https://pinot.apache.org/
https://github.com/ClickHouse/ClickHouse
https://www.starrocks.io/
https://rockset.com/
https://github.com/influxdata/influxdb
https://github.com/elastic/elasticsearch
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However, for certain low-latency, high-concurrency use cases, you can  by choosing 
a real-time analytics engine over a general-purpose analytics engine. It’s often best to mix and 
match engines for different use cases, depending on your requirements for data freshness, query 
speed, cost, and other factors. Since most real-time analytics engines couple compute with 
storage, the best practice is to copy only the cleaned and processed data that is required for 
real-time use cases from the data lakehouse to the real-time analytics engine.

save on costs

Case studies:

 uses the combination of Kafka and Pinot to process petabyte-scale financial data, 
handling half a million queries per secon

  leverages StarRocks to query hundreds of billions of records within second
  used InfluxDB to quickly and painlessly build a production-ready anomaly detection 

system 

Stripe 

Airbnb
Robinhood

Conclusion
The universal data lakehouse represents a paradigm shift in data architecture, one that 
synthesizes the strengths of traditional data lakes and warehouses into a unified, highly efficient, 
and future-proof system. As this whitepaper has demonstrated, the universal data lakehouse 
architecture not only overcomes the limitations of its predecessors but also opens doors to 
incorporate new advances in technology as they emerge. By embracing this architecture, 
organizations can achieve transformational improvements to their data infrastructure, including 
streamlined data processing, improved data quality, reduced costs, and enhanced flexibility in 
choosing compute engines tailored to specific needs.



The case studies of leading organizations like Uber, Walmart, and TikTok underscore the practical 
advantages of the universal data lakehouse in handling diverse, large-scale data workloads with 
efficiency and agility. Furthermore, you can immediately start leveraging the tactical guidance 
provided on data integration, preparation, and compute engine selection to earn incremental wins 
for your data platform.



Adopting the universal data lakehouse architecture is not just a strategic move for current data 
management needs; it's an investment in an organization's future data capabilities. As we step 
into an era marked by exponential data growth and rapid technological advancements, the 
universal data lakehouse stands out as a resilient, adaptable, and robust foundation for 
harnessing the power of data to drive innovation, efficiency, and competitive advantage.



The team at Onehouse has several decades of combined experience across the various systems 
discussed in this paper, and we built the Onehouse platform to help organizations more easily 
adopt the universal data lakehouse architecture. If you are interested in learning how you can 
transform your organization’s data infrastructure, we’re happy to chat; reach out at 

.gtm@onehouse.ai

https://imply.io/blog/apache-druid-google-bigquery-benchmark/
https://www.confluent.io/events/kafka-summit-europe-2021/analyzing-petabyte-scale-financial-data-with-apache-pinot-and-apache-kafka/
https://celerdata.com/hubfs/Airbnb_Case_Study.pdf?hsLang=en
https://get.influxdata.com/rs/972-GDU-533/images/Customer_Case_Study_Robinhood.pdf
mailto:gtm@onehouse.ai

