
Beyond
Infrastructure:
Conductor’s Implementation of Onehouse
for Scalable Data Lakehouse Solutions

ONEHOUSE CASE STUDY: CONDUCTOR 2

Contents

 Introduction ... 3

Challenges: Closed System Limitations and the Technical Debt Reality ..4

Solution: The Onehouse Integration & Partnership ... 5

Results: From Maintenance to Innovation ... 7

The Engineering Takeaway ..8

ONEHOUSE CASE STUDY: CONDUCTOR 3

Conductor is the world’s leading organic marketing platform,
helping businesses accelerate search traffic, digital growth,
and revenue. Their technology empowers marketers to create
powerful content that drives high-quality traffic while providing
comprehensive organic performance tracking. Conductor
serves forward-thinking global and emerging enterprise brands
including Citibank, Visa, and Casper.

When you’re operating at this scale, data infrastructure becomes
crucial to success. This case study delves into Conductor’s
journey in handling vast amounts of data efficiently and cost-
effectively through the implementation of Onehouse’s Universal
Data Lakehouse platform.

t

ONEHOUSE CASE STUDY: CONDUCTOR 4

Challenges: Closed System Limitations and the
Technical Debt Reality
Before implementing Onehouse, Conductor faced a complex web of data management challenges
that were hampering their ability to scale effectively. At the core of their problems was a fragmented
data architecture, with terabytes of data scattered across multiple services including Amazon
Aurora, MySQL, and Snowflake. This dispersion led to significant data duplication and made it
increasingly difficult to maintain a single source of truth for their operations.

The infrastructure management burden was particularly heavy on their team. They were attempting
to manage their own Apache Spark and Amazon EMR clusters while implementing Apache Hudi,
but their efforts to get Hudi working contributed to frequent out-of-memory errors in Spark. The
team also struggled with poor system observability throughout these challenges. When problems
arose, such as Spark failures, the team had to navigate complex organizational procedures just
to access logs, requiring time-consuming coordination with infrastructure teams. A significant
amount of time was spent trying to fine-tune their Hudi implementation, experimenting with
various configuration settings to find the optimal combination.

Performance issues plagued their system as they struggled to implement an effective data
modeling strategy with Apache Hudi. Their Redshift queries showed wildly inconsistent
performance—cold queries took 8 seconds while cached queries completed in 200 milliseconds.
The unpredictable nature of cache invalidation, combined with their evolving data model, made
it impossible to maintain consistent performance levels. This was especially problematic for their
user-facing analytics, where queries could take 20-30 seconds—far from their target of sub-3
second response times. Their challenges with Hudi implementation and data modeling strategy
led to inefficient query patterns that significantly impacted performance.

Scalability presented another set of critical challenges. Conductor needed to handle concurrent
queries from hundreds, potentially thousands of users while processing tens of terabytes of data.
Their weekly data collection process, combined with their nascent big data modeling approach,
created significant performance inconsistencies across their system. This made it particularly
difficult to support both batch and real-time data processing needs while maintaining reliable
query performance.

ONEHOUSE CASE STUDY: CONDUCTOR 5

The cumulative effect of these challenges was a significant drain on development time and
resources. The team found themselves spending excessive time on infrastructure management
rather than focusing on core business features. They lacked the specialized expertise needed
to optimize their data lake technologies effectively, and the constant need to coordinate across
multiple teams for infrastructure access slowed their development velocity considerably.

Solution: The Onehouse Integration & Partnership
Conductor implemented Onehouse as their data lakehouse solution, which provided them with
a Spark Kubernetes cluster running in their own VPC. This managed solution handled their Hudi
implementation on S3, providing automatic table services, AWS Glue Data Catalog sync capabilities,
and comprehensive reporting functionality.

Their query engine evaluation process was extensive. While Amazon Athena proved suitable for
exploratory work and AI feature extraction, they found limitations with other solutions. With
Redshift, they encountered inconsistent performance—cold queries would take 8 seconds while
cached queries ran in 200 milliseconds, but they couldn’t predict when data would be ejected from
cache. While Conductor uses Snowflake for certain workloads, they ruled it out for these specific
reports after a POC revealed it didn’t offer better performance than alternatives. Additionally,
Snowflake’s cost scaling at larger warehouse sizes was a significant concern.

Guided by Onehouse, Conductor systematically evaluated StarRocks configurations to optimize
their data architecture. Through careful testing, they determined that StarRocks’ shared-nothing
architecture on Amazon EBS was the best solution for their specific requirements. While alternative
approaches like direct Hudi integration and shared-data architecture were explored, Conductor’s
commitment to delivering exceptional performance led them to choose the EBS-based solution.
This configuration successfully achieved their goal of sub-second query performance for complex
analytics, making it worth the additional investment of approximately $100 per terabyte.

ONEHOUSE CASE STUDY: CONDUCTOR 6

Their data modeling strategy evolved significantly based on each tool’s capabilities. For one
particular dataset, when using Hudi, they had to implement a complex three-level partitioning
approach to handle data distribution:

• First level: Year
• Second level: Week number (1-52)
• Third level: A derived column created by hashing string values into a 16-byte number and using

modulo 50 to distribute data evenly across buckets

However, they later discovered that StarRocks supports this type of bucketing natively,
eliminating the need for such complex partitioning schemes. This effort proved that their data
modeling approach could be simplified by leveraging StarRocks’ built-in capabilities rather than
implementing custom solutions in Hudi.

For data ingestion into Hudi via Onehouse, Conductor discovered that using S3 with large Parquet
files could be more cost-effective than their current Kafka and Flink setup (potentially reducing
monthly costs from $1,000-2,000 to approximately $5) and potentially faster than using a
50-partition Kafka topic. While they currently maintain their Kafka-based system with optimized
costs, this Parquet-based approach is being considered as a recommendation for new workloads.

Throughout the implementation, Conductor benefited significantly from Onehouse’s support
team, who provided not just technical assistance but also education about best practices for
data modeling and partitioning. The ability to implement custom transformations became
straightforward—they could simply package a Java file and insert it into the Onehouse interface
without managing the underlying Spark infrastructure.

The improved system provided better observability through the user interface, allowing them
to view logs directly instead of coordinating across multiple teams for access. This streamlined
infrastructure management allowed Conductor to focus more on their core business of website
monitoring, content creation, and SEO services, rather than spending time configuring and
maintaining data infrastructure.

ONEHOUSE CASE STUDY: CONDUCTOR 7

Results: From Maintenance to Innovation
The implementation of Onehouse marked a transformative moment for Conductor’s data
infrastructure. As Emil Emilov, Conductor’s Principal Engineer, described it, Onehouse was “a
godsend” that provided them with a functioning data lake “overnight,” immediately addressing
most of their needs. The most immediate impact came from no longer having to manage their own
Spark and EMR infrastructure—instead of spending time configuring clusters and troubleshooting
memory issues, they could rely on a managed infrastructure that handled the complexity of Spark
operations while maintaining full visibility through comprehensive logging and monitoring.

Conductor saw significant improvements in their query performance and data accessibility.
Through Onehouse’s automated table services and optimizations, they could begin querying
their data as soon as tables were synced. The platform’s support for Apache Hudi, combined with
guidance from Onehouse on proper partitioning strategies, helped them address their previous
issues with partition skew and query latency. This was particularly crucial for their user-facing
analytics, where their original 20-30 second query times were reduced to 5-7 seconds through
optimizations, though they continue to work towards their target of sub-3 second response times
for optimal user experience.

Cost management and operational efficiency also improved significantly. By running in
Conductor’s own cloud infrastructure with configurable usage limits, they could better control
their resource utilization and costs. A particularly significant cost reduction could come from
migrating from Kafka/Flink to S3-based ingestion, as discovered in the team’s POCs, dramatically
reducing monthly costs from $1,000-$2,000 to approximately $5. Onehouse’s auto-scaling
capabilities provided dynamic resource adjustment based on workload demands. Furthermore,
the implementation of custom transformations became straightforward—the team could simply
package a Java file and insert it into the Onehouse interface without having to manage the
underlying Spark infrastructure. The improved observability through Onehouse’s user interface
meant they no longer had to coordinate across multiple teams just to access basic system logs.

ONEHOUSE CASE STUDY: CONDUCTOR 8

Perhaps most importantly, Onehouse enabled Conductor to shift their focus from infrastructure
maintenance to actual business value. Instead of spending time tweaking Spark configurations
and managing clusters, they could concentrate on improving their website monitoring, content
creation, and SEO services—their core business offerings. The platform’s ability to handle their
complex data requirements while remaining cost-effective and manageable proved crucial in
supporting Conductor’s continued growth and evolution.

Looking forward, Conductor plans to keep evolving their data platform with several technical
initiatives: query performance optimization focusing on join operations; additional cost reduction
through improved data scanning efficiency; exploration of StarRocks 3.3’s inverted full-text index
capabilities; integration with Hudi 1.0’s column stats index for enhanced query performance; and
retrying StarRocks native S3.

The Engineering Takeaway
Conductor’s experience highlights a crucial insight for data
engineers: sometimes the most sophisticated technical solution
involves knowing when to leverage specialized expertise. By
maintaining architectural control while delegating infrastructure
complexity to domain experts, they are achieving better
performance and reliability than their previous self-managed
approach.

As Emil notes, “With Onehouse, there’s a lot of things we
don’t have to figure out anymore. If it’s managed for you and
configured and it’s cost effective, you’re better off using it.
There is never enough time and never enough money.” For data
teams facing similar infrastructure modernization challenges,
Conductor’s journey offers a compelling blueprint for achieving
high-performance, scalable data architecture without getting
lost in infrastructure complexity.

Experience the Universal Data Lakehouse Advantage:
onehouse.ai/schedule-a-test-drive

“With Onehouse, there’s a

lot of things we don’t have

to figure out anymore. If

it’s managed for you and

configured and it’s cost

effective, you’re better off

using it.”

Emil Emilov,
Conductor’s Principal Engineer

http://onehouse.ai/schedule-a-test-drive

	
	Challenges: Closed System Limitations and the Technical Debt Reality
	Solution: The Onehouse Integration & Partnership
	Results: From Maintenance to Innovation
	The Engineering Takeaway

