
Onehouse Managed
Lakehouse Table Optimizer
Quick Start
May 14, 2024

Solution Overview

Onehouse provides integrated table services for optimizing read and write performance of Hudi
tables. Compaction, clustering, and cleaning are supported as out-of-the-box features for Hudi
tables managed within Onehouse as part of an ingestion stream capture. For more details,
refer to the Onehouse Docs.

In addition, Apache Hudi users can now utilize Onehouse Lakehouse Table Optimizer to
manage Hudi tables that are not created and operated by Onehouse. This quick start guide
provides detailed instructions and prerequisites to setup and use Onehouse Lakehouse Table
Optimizer.

Prerequisites
To begin, ensure you have a Onehouse account and have completed the onboarding
process outlined in the Getting Started documentation.

As external writers/jobs interact with a Hudi table while Onehouse’s managed table
services optimize it, a shared lock provider is essential to coordinate access by multiple
writers/jobs. The following shared lock providers are supported:

● Zookeeper: A Zookeeper instance (configured without authentication enabled)
accessible from the Onehouse EKS cluster.

https://docs.onehouse.ai/docs/product/manage-data/manage-tables
https://docs.onehouse.ai/docs/category/getting-started

2

● DynamoDB: An Amazon DynamoDB table accessible from the Onehouse EKS
cluster. This DynamoDB table will serve as the repository for shared locks.

Implementation Guide
Log in to the Onehouse Console at cloud.onehouse.ai and follow:

Add a lock provider instance in Onehouse
● Navigate to Settings -> Integrations.

● If Concurrency Control is enabled for your Onehouse account, you will see a tile
for ‘Lock Provider’ configuration. Note: If this feature is not enabled in your
Onehouse environment, please reach out to your Onehouse representative or
email gtm@onehouse.ai.

● Click ‘Configure’.

mailto:gtm@onehouse.ai

3

● Provide a ‘Name’, select Zookeeper/DynamoDB for “Provider”.
● For Zookeeper, provide a comma-separated list of host:port for ‘Zookeeper

Servers’:

● For DynamoDB, enter a name for the lock provider and provide the DynamoDB
table name and region.

4

Note: Because Onehouse doesn’t have the permissions required to create DynamoDB
tables, you need to create one yourself. Make sure an attribute with the name "key" is
present in the DynamoDB lock table. The key attribute should be the partition key and
you don't have to specify the sort key. References:
https://hudi.apache.org/docs/concurrency_control#amazon-dynamodb-based-lock-pr
ovider and
https://hudi.apache.org/docs/configurations/#DynamoDB-based-Locks-Configurations.

Discover Hudi tables as Onehouse Observed Lake
● Navigate to ‘Data’ and click ‘Create Lake’.

https://hudi.apache.org/docs/concurrency_control#amazon-dynamodb-based-lock-provider
https://hudi.apache.org/docs/concurrency_control#amazon-dynamodb-based-lock-provider
https://hudi.apache.org/docs/configurations/#DynamoDB-based-Locks-Configurations

5

● Provide a ‘Name’ for the lake, select ‘Observed Lake’ for ‘Type’, and specify the S3
path prefix that contains the Hudi tables to be managed as the ‘Root Path’. Click
‘Save’.

● All Hudi tables with the S3 path prefix provided in the last step will be discovered
in Onehouse. Table discovery is expected to take a few minutes. After the initial

6

discovery, new tables are discovered by a sync operation which runs once
every hour.

● Metadata for discovered tables is synced once every 5 minutes.
● Note: The S3 path prefix provided for Observed Lake creation must be unique

across all lakes created in Onehouse.

Enable Concurrency Control

● Navigate to one of the discovered Hudi tables and click ‘Concurrency Control’
from the table menu. This option is grayed if a lock provider is not configured.

● Click ‘Enable Concurrency’.

7

Update External Writers and Jobs

● Use the Hudi properties shown below to update all external writers/jobs accessing this

table outside Onehouse to enable concurrency control. This step must be completed

before proceeding.

8

9

The partition_key is in the form of “<Hudi_table_name>-<a truncated UUID based on
the s3 base path>“. This is to ensure uniqueness per table and avoid name collisions.

Configure Table Services

● Once all external writers/jobs are updated to utilize concurrency, proceed to the
‘Optimizations’ tab for the Hudi table and configure the services according to
the instructions provided in the Onehouse documentation.

https://docs.onehouse.ai/docs/product/manage-data/manage-tables#optimizations

10

● Initially the clustering option is “Disabled”. Provide the keys or columns to sort
the files (mandatory) and a table layout optimization strategy (default is Linear)
and click “Update” to enable.

● Use the “Disable” button to stop the execution of a table service.

Monitoring of Table Service Jobs

Navigate to the ‘History’ tab to observe successful runs of table services jobs as well as
commits made by external writers/jobs:

11

Conclusion
Onehouse Lakehouse Table Optimizer offers customers with self-managed Hudi pipelines
a fully managed solution for running and monitoring table management services for
their Hudi data lakehouses. This empowers customers to focus on crucial data
ingestion and transformation tasks for analytics and ML, leading to improved
performance. Additionally, it provides a user-friendly service for managing, maintaining,
and optimizing Hudi tables and underlying Parquet files.

If you are ready to give Onehouse a try, or want to learn more, please visit the
Onehouse listing on the AWS Marketplace or sign up for a Onehouse free trial.

https://aws.amazon.com/marketplace/pp/prodview-zw7rtdegdab5g
https://www.onehouse.ai/schedule-a-test-drive

