
Ge�ing Started Guide
Synchronize PostgreSQL
and your Lakehouse:
CDC with Onehouse on AWS
Edition: January 2nd, 2024

Introduction 2
Solution Overview 3
Prerequisites 4
Additional Onehouse Setup 5

Create a data lake 5
Create data catalogs 7

Create a Postgres Database (Amazon RDS) 9
Create a VPC (Virtual Private Cloud) for the database 9
Create the database instance 10
Set up a sample database 12

Preparing the AWS Environment for CDC 13
Ensure that Amazon RDS parameters are set correctly 13
Create a dedicated database user for Onehouse 13
Create a schema registry in AWS Glue 14
Grant Glue write permissions to the Onehouse IAM role 15
Set up a VPC peering connection between the Onehouse VPC and the database VPC 15

Create a data source and stream capture 18
Create a new CDC source in Onehouse 18
Set up a CDC stream capture in Onehouse 19

Observe Data Ingestion and Mutations 21
Explore the Data tab 21
Query the datalake 22
Change the database data 24

Conclusion 26
Reference 27



2

Introduction
Organizations have a wealth of data sitting in their business applications that can be
mined for insights and decision making. Most of this application data is hosted within
various OLTP databases.

The traditional approach to analytics on business data is to build a data warehouse,
partitioned and organized to serve specific types of queries. However, this requires an
understanding, in advance, of the kinds of questions the business will have, and it fails
to support workloads in data science, such as predictive analytics and AI/ML.

Another solution that is gaining popularity is replicating this data in near real-time to a
data lakehouse. This requires less upfront planning, is more flexible, is less expensive to
create and operate, and is capable of serving a wide variety of use cases.

In this guide, we will show you how to set up the Change Data Capture (CDC) feature of
Onehouse to enable continuous synchronization of data from an OLTP database into a
data lakehouse. We will be using Amazon RDS PostgreSQL as our example source
database.

https://robinhood.engineering/author-balaji-varadarajan-e3f496815ebf


3

Solution Overview
Onehouse can automatically configure an end-to-end CDC ingestion pipeline from a
PostgreSQL database (with other RDBMS’s on the roadmap) to an analytics-ready data
lakehouse.

Several Onehouse customers, such as Apna, have been running this pipeline in
production. Under the hood, Onehouse automates the data infrastructure in your
account to leverage Apache Kafka, Debezium, Apache Spark, and Apache Hudi, without
exposing any of this complexity or required maintenance to you. If you are currently
designing your own CDC ingestion pipelines to a data lake, or if you are tired of the
maintenance requirements, inflexibility and on-call monitoring of an in-house solution,
Onehouse can make this a seamless experience for you.

We will set up Onehouse to ingest data continuously from an AWS RDS PostgreSQL
database into an Amazon S3 data lake.

https://medium.com/apna-technology-blog/building-data-lakehouse-to-unleash-the-power-of-data-at-apna-960dccbdc618
https://kafka.apache.org/
https://debezium.io/
https://spark.apache.org/
https://hudi.apache.org/


4

Prerequisites
● A fully linked and provisioned Onehouse project on AWS

To check this, in Onehouse navigate to Settings -> Cloud accounts and
check that you have an entry in the table with a status of ‘Completed’.

If you haven’t yet provisioned your Onehouse project, please refer to this guide:

● (Onehouse provisioning guide coming soon…)

If you still need a login to Onehouse, please sign up for a free test drive at:
https://www.onehouse.ai/schedule-a-test-drive

https://www.onehouse.ai/schedule-a-test-drive


5

Additional Onehouse Setup
Before setting up any data ingestion, we first need to create a data lake and at least one
data catalog. If the homepage of your Onehouse account shows that you still need to
‘Create a Catalog’ and ‘Create a Lake’ in the ‘Getting Started’ dialog, then you are in the
right place. If you already have a data lake and a catalog set up, you can skip to the next
step.

Create a data lake

Create a folder for the data lake inside the Onehouse AWS S3 bucket.
Log in to your AWS console, and navigate to the ‘Amazon S3’ service and
then ‘Buckets’. You should see a bucket name beginning with
onehouse-customer-bucket.
Click the bucket name to see the Objects inside the bucket, then click
‘Create folder’. Name the new folder ‘datalake’ and click the ‘Create folder’
button.
While you are here, create an additional folder called ‘query_results’. We
will use this folder later.

Register the data lake in Onehouse
On the Onehouse portal, navigate to the ‘Data’ tab, then click the ‘Create
Lake’ button.
Give the new data lake a name. We’ll call it acme_retail.
For ‘Type’ click ‘Managed Lake’



6

For ‘Root Path’ copy the URI of the S3 bucket and folder using the ‘Copy
S3 URI’ button in Amazon S3.

Back in Onehouse, paste the S3 URI into the ‘Root Path’ field, then click
‘Save’.

Create a database

● Name it ‘acme_retail_bronze’
● You can delete the database called ‘acme_retail_default’



7

Create data catalogs

In Onehouse, navigate to the ‘Catalogs’ tab.
In the ‘Glue Metastore’ card, click ‘Add new Catalog’.

Give the new catalog a name like ‘Onehouse’ and click the ‘Create’ button.
In the ‘Onetable’ card, click ‘Add new Catalog’.



8

Give the new catalog a name, such as ‘Onetable’. Under ‘Compatible table
formats’ make sure that ‘Hudi’, ‘Delta Lake’ and ‘Iceberg’ are all checked.

Note: Each additional table format you enable requires a relatively small amount of
additional storage (for each format’s metadata), a slight increment in compute required,
and a small performance penalty. There is no penalty on reads from the enabled table
formats.

With all three table formats chosen, Onetable will write metadata in all of them. This
enables readers using any of the three formats to access your data lakehouse with no
performance penalty. We will use this later to demonstrate connectivity from various
query engines.



9

Create a Postgres Database (Amazon RDS)
In this section we will create a VPC (virtual private cloud) and a sample Postgres
database that is publicly accessible (that is, externally available to desktop database
clients so that we can make changes to the data and demonstrate data lake mutations.)
If you already have a Postgres database that you can modify, you can skip to the next
section.

Note: To minimize costs, the database should be in the same region as your Onehouse
installation.

Create a VPC (Virtual Private Cloud) for the database

In this step, we will create a VPC with two availability zones and one public subnet in
each zone.

Navigate to the AWS VPC dashboard and select ‘Your VPCs’ in the side menu.
Make note of the IPv4 CIDR for this VPC, as highlighted in the figure.

Click the ‘Create VPC’ button and create a VPC with the following:
Resources to create: ‘VPC and more’
Name tag: acmedb
IPv4 CIDR: Choose an address range that does not overlap with the CIDR
of the onehouse VPC. In this case, the existing VPC has a CIDR of
10.0.0.0/16 so we will use 11.1.0.0/16.



10

Number of availability zones: 2
Number of public subnets: 2
Number of private subnets: 2
NAT gateways: None
VPC endpoints: None
DNS options:

■ Enable DNS hostnames: Checked
■ Enable DNS resolution: Checked

Click into the new VPC and look at the Resource map.
Make note of the availability zones for the subnets and route tables. Also
make note of the subnet IDs for the 2 public subnets.

Create the database instance

Before creating the database, we will create a DB subnet group that contains just the
two public subnets. Although RDS can automatically create a subnet group during
database creation, it will create it with private subnets. We need a subnet group
containing only the public subnets to enable the database to be publicly accessible.

Create a database subnet group
Navigate to the AWS RDS service.
Click ‘Subnet groups’ in the side menu.
Click ‘Create DB subnet group’ and provide the following details:

■ Name: db-subnet-11-1
■ Description: Public subnets for DB
■ VPC: Choose the VPC you set up for the database.
■ Availability Zones: Select the two availability zones used by the

database VPC.
■ Subnets: Select the two public subnets used by the database VPC.

Create the database
From within the AWS RDS service, click ‘Databases’ in the side menu.
Click ‘Create database’
Choose ‘Easy create’
Under Configuration choose:

■ Engine type: PostgreSQL
■ DB instance size: Free tier
■ DB-instance identifier: acme-db
■ Master username: postgres
■ Either supply or auto-generate a password.

Click ‘Create database’



11

Note your master password and connection details by clicking the
‘View credential details’ button when it appears.

Create a security group that allows port 5432 to pass in
From the database details page, click the link for the default VPC security
group
Click ‘Create security group’
Supply the following details:

■ Security group name: db-public-security-group
■ Description: Allows external access to database
■ VPC: Choose the database VPC created earlier
■ Under ‘Inbound rules’, click ‘Add rule’
■ Set the type to: ‘PostgreSQL’
■ Source: ‘Anywhere-IPv4’

Scroll to the bottom and click: ‘Create security group’



12

Edit the database to make it publicly accessible:
Navigate back to the database page, click ‘Modify’
Under ‘Connectivity’

■ Remove the default security group, then replace it with the new
‘db-public-security-group’ security group.

■ Ensure that the subnet group is set to the same that you created
earlier.

■ Open the ‘Additional configuration’ section.
Under ‘Public access’ click ‘Publicly accessible’

Scroll down to the bottom and click ‘Continue’
Choose ‘Apply immediately’ under Schedule modifications
Click ‘Modify DB instance’

Test the connectivity using your database client of choice. The pgAdmin tool
works well; or, if you have the PostgreSQL command line tools installed, you can
connect using a command like the following:
$ psql -h acme-db.cc64n2qunrtu.us-west-2.rds.amazonaws.com
-U postgres -W -d postgres -p 5432

Set up a sample database

In this step, we will create a sample database with simple data that we can update to
demonstrate change data capture (CDC) later on.

Download three sample data files and two SQL scripts from:

https://github.com/corourke/acme/tree/main/postgres

Put these files in a convenient location for your database client.

Connect to Postgres as before, then run the following statements as the ‘postgres’ user:

CREATE DATABASE "acme";
GRANT ALL PRIVILEGES on DATABASE acme to postgres;

Then, reconnect to the new ‘acme’ database:

$ psql -h acme-db.cc64n2qunrtu.us-west-2.rds.amazonaws.com -U
postgres -W -d acme -p 5432

Then create the ‘retail’ schema:

CREATE SCHEMA retail;
SET SEARCH_PATH TO retail;
\i create_tables.sql

https://www.pgadmin.org/
https://github.com/corourke/acme/tree/main/postgres


13

\i load_tables.sql

You can confirm that the database is populated by running a few simple queries.



14

Preparing the AWS Environment for CDC
To be ready to create a Onehouse data source and a stream capture, you need to:

● Ensure that the Amazon RDS parameters are set correctly
● Create a dedicated database user
● Create the heartbeat table
● Create a schema registry in AWS Glue
● Set up a connection between the two VPCs

Ensure that Amazon RDS parameters are set correctly

To verify the status of logical replication, log in to the source PostgreSQL database, then
run the following query:

SELECT name,setting FROM pg_settings WHERE name IN
('wal_level','rds.logical_replication');

You should see the following result:

name | setting
-------------------------------+---------
rds.logical_replication | on
wal_level | logical
(2 rows)

If either of these parameters are different, configure an RDS parameter group to set the
'rds.logical_replication' parameter to 1 per these instructions: Configure a
database parameter group, then restart the database.

Note: to avoid filling up your log files and running out of storage space, you may
additionally want to set the following parameters in your custom parameter group:

rds.log_retention_period = 1440

Create a dedicated database user for Onehouse

Log into the Postgres source data database as the ‘postgres’ user, then create a
dedicated user for Onehouse. Supply your own password:

CREATE USER cdc_user WITH ENCRYPTED PASSWORD '<your_password>';
GRANT rds_replication TO cdc_user;
GRANT ALL ON SCHEMA retail TO cdc_user;

https://docs.onehouse.ai/docs/product/ingest-data/sources/postgres-cdc/#configure-a-database-parameter-group
https://docs.onehouse.ai/docs/product/ingest-data/sources/postgres-cdc/#configure-a-database-parameter-group


15

ALTER USER cdc_user SET SEARCH_PATH TO retail;
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA retail TO
cdc_user;
GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA retail TO
cdc_user;
ALTER DEFAULT PRIVILEGES IN SCHEMA retail GRANT ALL PRIVILEGES
ON TABLES TO cdc_user;
ALTER DEFAULT PRIVILEGES IN SCHEMA retail GRANT ALL PRIVILEGES
ON SEQUENCES TO cdc_user;

Create a publication that publishes changes in all tables:

SET SEARCH_PATH TO retail;
CREATE PUBLICATION alltables FOR ALL TABLES;

Note: If, when executing this statement, you get an error message such as this one:

WARNING: wal_level is insufficient to publish logical changes
HINT: Set wal_level to "logical" before creating subscriptions.

…it means that you need to restart the DB for the custom parameter change to take
effect. You can confirm this by checking the wal_level (write-ahead level) in the
database; it should be set to 'logical':

SHOW wal_level;

Finally, create the heartbeat table:

CREATE TABLE onehouse_heartbeat (
id INTEGER DEFAULT 1 PRIMARY KEY,
updated_at timestamp DEFAULT CURRENT_TIMESTAMP
);

INSERT INTO onehouse_heartbeat DEFAULT VALUES ON CONFLICT (id)
DO UPDATE SET updated_at=NOW();
GRANT ALL ON TABLE retail.onehouse_heartbeat TO cdc_user;

Create a schema registry in AWS Glue

In this example, we will use the AWS Glue Schema Registry to make our datalake data
schemas available to other facilities within AWS. These schemas will be populated
automatically by Onehouse.

In the AWS Management Console, search for and select ‘AWS Glue’.
In the left menu, select ‘Stream schema registries’.



16

Click the ‘Add registry’ button.
Enter the name, ie ‘Onehouse’, and a description if desired, then click ‘Add
registry’.

Grant Glue write permissions to the Onehouse IAM role

In the AWS console, search for and select IAM.
In the menu on the left, select ‘Roles’.
Search for roles that start with ‘onehouse-’
Find the roles that start with `onehouse-customer-core` and
`onehouse-customer-eks-node-role`. For each of these two roles:

Click into the role.
Click the ‘Add permissions’ button and choose ‘Attach policies’
Search for ‘AWSGlue’ and select two policies:

AWSGlueServiceRole
AWSGlueSchemaRegistryFullAccess

Click ‘Add permissions’

Set up a VPC peering connection between the Onehouse VPC and the database
VPC

Since the Onehouse infrastructure and our sample Postgres database are in two
different VPCs, we need to create a peering connection so that communications can
flow between them.

In the AWS console, search for and select ‘VPC’.
In the menu on the left, select ‘Peering connections’.
Click ‘Create peering connection’

Name: onehouse-to-acmedb
Choose the onehouse VPC as the first connection
Choose the database VPC as the second connection
Click ‘Create peering connection’



17

You must also “accept” the peering connection as an administrator.

Next we need to add routes to the routing tables that connect to the public subnetworks
in both VPCs.

In the VPC console, select ‘Subnets’ from the menu on the left.
Filter subnets by the word ‘public’. You’ll note the public subnets and their
respective IPv4 CIDRs.

In this case, in the us-west-2a zone, the ‘onehouse’ subnet is using 10.0.0.0/20
and the ‘acmedb’ subnet is using 11.1.0.0/20.
On the left menu, select ‘Route tables’ and find route tables for each of the two
public subnets. For each one:

Click into the route table, then click ‘Edit routes’



18

Add a route with the destination set to the CIDR of the other VPC. (In
this example, for the 10.0.0.0 VPC, we would enter 11.1.0.0/20, and for
the 1.1.0.0 VPC, we would enter 10.0.0.0/20.)
For the target, choose ‘Peering connection’ then choose the peering
connection we set up earlier.
Click ‘Save changes’
Repeat for the other route table



19

Create a data source and stream capture
With all the setup and configuration out of the way, we can now create a data source
(which points to the database) and one or more stream captures (one for each table we
want to replicate).

Create a new CDC source in Onehouse

To create a new PostgreSQL CDC source:

In the Onehouse console, select ‘Sources’ on the left menu, then click ‘Add New
Source’
Scroll down the list of sources and choose ‘Postgres CDC’
Fill in the following fields:

Name: acme-retail-cdc
Credential Type: Stored by Onehouse
Database Host: <the_rds_postgres_hostname>
Database Port: 5432
Database Name: acme
Database User: cdc_user
Database Password: <your_db_user_password>
Schema Registry: AWS Glue Schema Registry: Onehouse

Onehouse will perform network connectivity validation tests before adding the new
source.



20

Set up a CDC stream capture in Onehouse

Next, we will create stream captures for each table in our database.

In the Onehouse console, select ‘Stream Captures’ on the left menu, then click
‘Add New Stream’ and fill in the form:
Step 1: Pick a data source

Name: `AcmeRetailCDC`
Choose the ‘acme-retail’ data source.

Step 2: Capture Configs
For ‘Write Mode’ choose Mutable, since we wish to capture updates and
deletes.
For Sync Frequency, for this test, choose 5 minutes.
Under Select Tables, you can select all the tables except for ‘retail.scans’
(this will be a high velocity table that we will capture as Append-only,
rather than Mutable, in another tutorial.)
For each table, click the ‘Configure’ button.

Under Transformations, the ‘Convert data from CDC format’, CDC
Format: Postgres (Debezium) should already be added.
Check that the ‘Record key fields’ has the primary table key added.
‘Precombine key fields’ should be ‘_event_lsn’.

Step 3: Pick data lake and database
Data lake: acme_retail_bronze
Database: acme_retail_default (this was created automatically)
Catalogs: Onehouse, Onetable (both were set up earlier)

Click: ‘Start Capturing’

You can now go back to Stream Captures and observe the Status.

It may take approximately 30 minutes the first time you provision a stream capture, due
to the time required for Onehouse to set up an Amazon MSK (Managed Streaming for
Apache Kafka) cluster and Debezium in the background.

Once the status changes to Running, we can observe the data under the Data tab.



21



22

Observe Data Ingestion and Mutations
First we will confirm that the seed data has been loaded into the datalake, then we will
manually make some database changes and see how the data lake remains
synchronized with the database.

Explore the Data tab

This is where we can view the data table statistics, optimizations, and history.

Click the ‘Data’ tab in the menu on the left.
Click into the database and click one of the tables.

Note that the table names include the database schema name, prepended
to the base table name.

On the ‘Overview’ tab:
Observe the total records loaded and data sizes.

On the ‘Optimizations’ tab:
We won’t yet see any clustering, compaction, or cleaning activity, but these
will come into play as we add more data.



23

On the ‘Operations’ tab:
Note that this is where we can create and restore point-in-time
snapshots.
Also, information about quarantined records can be found here

On the ‘History’ tab:
We can view the data changes made to the data lake over time.

At this point you can confirm that all the seed data has been loaded. Select each of the
tables and check the total records loaded:

Item_categories 35

Item_master 32,000

Retail_stores 1,000

Query the datalake

Now we will check the synchronization of metadata in AWS and query the datalake data.

In the AWS console, search for ‘Glue’ and select ‘AWS Glue’
In the left menu, under ‘Data catalog’, select ‘Databases’. Here you should see a
database named ‘acme_retail_default’. This mirrors the database shown in the
Onehouse UI.

Click into the database and you should see the tables you have created. Each
table has a version optimized for read-only and a version optimized for read-write
operations.

Note: The read-only version is faster, but may not return the freshest data if it has
recently been changed. The read-write version always returns the current data.



24

To query the datalake, we will use Amazon Athena.

In the AWS console, search for ‘Athena’ and select ‘Athena’.
Open up the left-hand menu, then select ‘Query editor’.
Before you run your first query, you will be asked to set a query result location in
Amazon S3. Click the ‘Edit settings’ button.

At the ‘Manage settings’ dialog, click the ‘Browse S3’ button.

Browse to the ‘onehouse-customer-bucket-...’, select the ‘query_results’
folder that we created earlier, then click ‘Choose’.
Click ‘Save’, then click the ‘Editor’ tab.

Now enter a simple query and click ‘Run’:
select count(*) from retail_item_categories_rt;



25

Observe the results:

Change the database data

Now we will modify the data in the source PostgreSQL database.

Log in to the data using psql or your preferred database client as the ‘postgres’
user.
Issue the following statements:

INSERT INTO item_categories (category_code,
category_name, category_description) VALUES (20900,
'Video Games', 'Video game consoles, games and
accessories');
UPDATE item_master SET category_code = 20900 where
category_code = 20460 and item_id % 8 = 0;

This will create a new product category and re-categorize about 30 of the existing
items.

After a few minutes, we can see the changes in Onehouse.

In the Data tab, click the ‘retail_item_categories’ table and the ‘Overview’ tab;
observe that the total number of records is now 36.



26

Click the ‘History’ tab and see the additional commit:

Click the ‘retail_item_master’ table, go to the History tab, and check for an
additional commit. This time, click the ‘Details’ link to see how many rows were
updated.

To confirm that the rows have been updated in the datalake, issue the following
query in Athena. The query should return a value of 30.
SELECT count(*) FROM retail_item_master_rt WHERE
category_code = 20900

Note: for more information on why we need to specifically use the _rt table
to get the freshest data, please see the Hudi concepts doc.

https://hudi.apache.org/docs/0.5.0/concepts/#:~:text=There%20are%20two%20ways%20of,way%20for%20the%20RO%20table.


27

Conclusion
This guide shows how simple it is to use the PostgreSQL change data capture (CDC)
feature in Onehouse to set up an end-to-end data pipeline. By leveraging this feature,
organizations can replicate data from their PostgreSQL databases to a data lakehouse
with near real-time latency, and setup takes just a few clicks! This enables organizations
to keep up with the fast-changing demands of the modern business world, where
data-driven decision-making is essential for success.

If you want to give Onehouse a try, please visit the Onehouse listing on the AWS
Marketplace or contact gtm@onehouse.ai.

https://aws.amazon.com/marketplace/pp/prodview-zw7rtdegdab5g
mailto:gtm@onehouse.ai


28

Reference
Instantly unlock your CDC PostgreSQL data on a data lakehouse using Onehouse

[Solution] Ingest PostgreSQL CDC Data into the Lakehouse using Onehouse

https://www.onehouse.ai/blog/instantly-unlock-your-cdc-postgresql-data-on-the-lakehouse-using-onehouse
https://drive.google.com/file/d/1Of0atB0QhH1ZppUh2i5yOhJNl6RZZIf1/preview

