

Onehouse Clustering Strategy Best
Practices
Last Update: Nov 21, 2024

By Po Hong

Introduction

Onehouse offers customers a managed Universal Data Lakehouse (UDL) platform
that enables rapid data ingestion and transformation in minutes, all at a reduced
cost. Your data is stored in an auto-optimized, open-source data lakehouse,
supporting a wide range of analytics and AI use cases, and is compatible with
any query engine you prefer.

During the ingestion process, Onehouse leverages Apache Hudi to write the
data, benefiting from Hudi's maturity, built-in indexes, and proven track record
in providing low data latency for both batch and streaming workloads.

Onehouse offers customers fully automated small file handling and provides
several sorting and ordering strategies, including linear ordering, Z-Ordering and
others.

In this blog, we'll explore clustering strategies such as linear ordering and
Z-Ordering. We'll explain the best use cases for each, discuss their deployment
options, and share best practices to help you optimize your Onehouse
experience.

https://www.onehouse.ai/
https://www.onehouse.ai/
https://www.onehouse.ai/blog/onehouse-analytics-engine-guide
https://hudi.apache.org/
https://www.onehouse.ai/blog/apachehudi-z-order-and-hilbert-space-filling-curves

2

What is Clustering in Apache Hudi?

In Apache Hudi, clustering typically involves two key tasks:

● Managing small files: During ingestion, small files are merged into
optimally-sized files (~100MB) to prevent performance issues for query
engines.

● Re-organizing data files: Sorting or organizing data files based on specific
columns to improve query performance for certain patterns.

Small file handling works out of box with Onehouse. For more detailed
information about how it works, see:
https://hudi.apache.org/blog/2021/03/01/hudi-file-sizing/.

Clustering, in the context of data storage, stands as a valuable optimization
technique to improve the storage layout by preserving data locality for better
read efficiency.

Hudi offers three layout optimization strategies, namely linear, Z-Order, and
Hilbert curves. Each of these strategies defines how records should be sorted
during ingestion. The default strategy is linear, which performs lexicographical
sorting. The other two, Z-Order and Hilbert curves, are known as space-filling
curves; both sort entries and preserve good spatial locality, and they are similar
in nature.

Purpose of Data Clustering

Optimizing Data Layouts

As you ingest data and build your data platform, it's crucial to efficiently
organize the data layout for optimal storage and query performance. Without
proper organization, the performance of your pipelines and queries can degrade

https://hudi.apache.org/blog/2021/01/27/hudi-clustering-intro/
https://hudi.apache.org/blog/2021/03/01/hudi-file-sizing/
https://www.onehouse.ai/blog/apachehudi-z-order-and-hilbert-space-filling-curves
https://www.onehouse.ai/blog/apachehudi-z-order-and-hilbert-space-filling-curves
https://en.wikipedia.org/wiki/Lexicographic_order
https://en.wikipedia.org/wiki/Lexicographic_order

3

over time. Key data layout optimizations include partitioning, indexing,
clustering, file-sizing, and cleaning. While these techniques are commonly
supported in databases or data warehouses, they are often lacking in cloud
object storage systems such as Amazon S3, Azure Data Lake Storage, and
Google Cloud Storage (GCS).

In analytical systems, the write-to-read ratio is typically 1:100 or higher - that is,
for every update, there are 100 or more queries. The reads serve various
purposes such as real-time dashboards, weekly reports, and downstream
analytics or AI/ML applications. Additionally, the data layout during ingestion is
often different from the layout needed for efficient querying. For instance, it’s
easier to ingest customer orders by OrderDate, but querying is typically more
efficient when the data is sorted by CustomerId.

Clustering in Hudi

Hudi's clustering framework offers a flexible strategy to reorganize data layouts
and optimize file sizes. This enables you to enhance query performance without
compromising data ingestion throughput. Clustering improves query efficiency
by adjusting the data layout on disk, through sorting based on user-specified
columns. This approach leverages the Parquet file format's ability to perform
predicate push-down and skip irrelevant files and Parquet row groups, further
improving performance and managing file sizes to avoid small file issues.

Clustering Strategies in Apache Hudi
In this blog, we will focus on two of the most common clustering strategies in
Hudi: linear ordering and Z-Order. Hilbert curves are similar to Z-Order; in some
cases, such as a large number of clustering columns, they may have better
performance than Z-Order. For more details about the comparison between
Z-Order and Hilbert curves, see Apache Hudi Z-Order and Hilbert Space Filling
Curves.

https://www.onehouse.ai/blog/knowing-your-data-partitioning-vices-on-the-data-lakehouse
https://hudi.apache.org/blog/2021/03/01/hudi-file-sizing/
https://wikipedia.org/wiki/Hilbert_curve
https://www.onehouse.ai/blog/apachehudi-z-order-and-hilbert-space-filling-curves
https://www.onehouse.ai/blog/apachehudi-z-order-and-hilbert-space-filling-curves

4

Linear Order

Using this clustering or sorting strategy, the data files in each partition of a
Hudi table - assuming it is a partitioned table - will be sorted by one or more
columns, and the order of these columns plays a critical role.

As an example, let’s assume that we use three columns (A, B, C) as the
clustering/sort key. Then ONLY the following predicates (or group by) in a SQL
query will benefit from this sort order: (A), (A, B), and (A, B, C). But queries with
predicates on columns (B), (B,C) or (C) won't benefit from the sort key. A good
mental model is to think of linear ordering/sort keys in Hudi as B-tree indexes in
relational databases.

Z-Order

Z-Ordering is a data layout optimization technique that enhances query
performance by sorting data across multiple columns. It maps multidimensional
data into a one-dimensional space while preserving data locality, meaning that
data points close in the original, multidimensional space remain close in the
one-dimensional space. This allows for more efficient data retrieval and improves
query performance by enabling more effective file skipping, complementing
other data skipping techniques, such as using column statistics in Hudi.

Z-ordering is especially valuable when dealing with multiple columns. If you only
need to sort by a single column, linear ordering is sufficient. However, if your
query pattern involves multiple columns like (A, B, C), and these columns are
frequently queried either individually or in pairs, applying Z-Ordering to (A, B, C)
would generally provide better performance than a simple linear sort key.

As an example, let’s perform a simple test on two Hudi tables which have the
same data: table_1 and table_2. Table_1 is using a linear sort order on columns
(A,B,C), while table_2 uses a Z-Order on the same columns (A,B,C).

https://en.wikipedia.org/wiki/B-tree
https://www.onehouse.ai/blog/hudis-column-stats-index-and-data-skipping-feature-help-speed-up-queries-by-an-orders-of-magnitude

5

Now consider the following three queries:

Q1: Select A, count(*) From table Group By A;

Q2: Select B, count(*) From table Group By B;

Q3: Select C, count(*) From table Group By C;

The query runtimes for the two different clustering/sorting strategies are
summarized in Figure 1.

 Figure 1: Query performance for linear ordering and Z-order (lower is better)

When a query uses column A, the leading column in the linear order key on
Table_1, it performs as well as or even slightly better than on Table_2, which
uses Z-order. However, when columns B and C are queried individually, linear
ordering loses its effectiveness compared to Z-order.

6

Choosing the Right Clustering Strategy

Following are guidelines and best practices for choosing the best clustering
strategy:

● Identify Clustering Requirements: Analyze data characteristics, usage
patterns, and query workloads and compare them to your clustering
options.

● Choose Appropriate Clustering Columns: Select columns that effectively
represent data patterns and are relevant to query filtering and data
access needs. Clustering columns should have a relatively high cardinality.

● Choose a Clustering Strategy:
○ Choose linear ordering if your query patterns are dominated by

certain frequently-used predicates, and arrange them accordingly.
In general, you should limit a linear ordering key to no more than
four columns. Additionally, ensure that the ordering key as a whole
has a sufficiently high cardinality to minimize data skew during
Spark shuffling.

○ Choose Z-Ordering if the clustering columns are more or less equally
frequent in the predicates.

● Utilize Onehouse’s Incremental Clustering Feature: Leverage Onehouse’s

built-in incremental clustering capabilities to simplify the clustering
process and integrate it with data ingestion and management workflows.

● Onehouse’s Table Optimizer Feature: For Hudi tables created and managed
outside of Onehouse, you can use Onehouse’s Table Optimizer to run table

https://www.onehouse.ai/solutions/optimize-lakehouse-tables
https://www.onehouse.ai/product/table-optimizer
https://www.onehouse.ai/blog/table-optimizer-the-optimal-way-to-execute-table-services

7

services (e.g. clustering) on these external Hudi tablesTable Optimizer:
The Optimal Way to Execute Table Services in an async mode without
impacting the writer’s performance, helping to meet strict performance
SLAs and reduce operational burden.

Conclusion
To optimize data layouts as you ingest data and build your data platform, it's
important to consider how to efficiently organize the data on storage for both
performance and cost savings.

Onehouse addresses this need by bringing essential database-like storage
layout optimizations to a managed data lakehouse. In this blog, we have
discussed the clustering strategies available in Hudi, such as linear ordering and
Z-Order, explored their typical use cases, and provided guidance on selecting
the optimal clustering strategy. If you already have a data lakehouse based on
Apache Hudi and want to streamline management and automate Hudi table
services such as clustering, compaction, and cleaning, you might consider
Onehouse's Table Optimizer product.

If you are interested in learning more, please reach out to gtm@onehouse.ai or
sign up for a free trial with $1000 in credits.

https://www.onehouse.ai/blog/table-optimizer-the-optimal-way-to-execute-table-services
https://www.onehouse.ai/blog/table-optimizer-the-optimal-way-to-execute-table-services
mailto:gtm@onehouse.ai
https://www.onehouse.ai/schedule-a-test-drive

	
	Onehouse Clustering Strategy Best Practices
	Introduction
	What is Clustering in Apache Hudi?
	Purpose of Data Clustering
	Optimizing Data Layouts
	Clustering in Hudi

	Clustering Strategies in Apache Hudi
	Linear Order
	Z-Order

	Choosing the Right Clustering Strategy
	
	Conclusion

