
from

Zero
to

one

Shiyan Xu
Apache Hudi PMC member

Contents

Preface...3

Chapter 1: A First Glance at Hudi's Storage Format..4

Chapter 2: Read Operation Flow and Query Types..9

Chapter 3: Understanding Write Flows and Operations..15

Chapter 4: All about Writer Indexes..23

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing.........28

Chapter 6: Demystifying Clustering and Space-Filling Curves..34

Chapter 7: Run Writers and Table Services Concurrently...39

Chapter 8: Read and Process Incrementally...45

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion...50

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights...56

Conclusion..63

Apache Hudi: From Zero to One 2

Preface
Apache Hudi is a revolutionary open-source framework that transforms the way data
engineers and scientists interact with large-scale datasets. Hudi offers the
capabilities of a traditional database, including efficient upserts, deletions, and
incremental data processing, all by creating and managing metadata alongside a
traditional data lake architecture. The combination of new data management
capabilities, on top of data lake underpinnings, is referred to as a data lakehouse.

Hudi was the first data lakehouse project - though when it was introduced, in 2016, it
was referred to as a transactional data lake. Since then, Hudi has been joined by
Apache Iceberg and Delta Lake. All three are widely used open source data lakehouse
projects.

Hudi's ability to perform efficient upserts, handle incremental updates smoothly, and
its rich services layer overall, continue to serve as distinguishing features for Hudi.
(See our for details.) And this year has seen the introduction of

, which provides read-write interoperability across the
three projects.

This ebook, which originated as , provides a
comprehensive introduction to Hudi's storage format, emphasizing its transactional
nature and how it facilitates ACID properties on large-scale datasets. Through
explorations of read and write operations, indexing strategies, and table services such
as compaction and clustering, the book provides a foundation for understanding
Apache Hudi's core mechanics and its impact on the design and efficiency of data
lakehouses.

comparison blog post
Apache XTable (Incubating)

a series of Substack blog posts

Apache Hudi: From Zero to One 3

https://www.onehouse.ai/blog/apache-hudi-vs-delta-lake-vs-apache-iceberg-lakehouse-feature-comparison
https://xtable.apache.org/
https://blog.datumagic.com/

Chapter 1:

A First Glance at Hudi's Storage Format

Hudi Overview
Hudi is a transactional data lake platform that brings database- and data
warehouse-like capabilities to the data lake. At its core, Hudi defines a data table
format that organizes the data and metadata files within storage systems,
allowing for ACID transactions, efficient indexing, and incremental processing. The
Hudi stack is depicted in Figure 1-1.

S

Figure 1-1: The Hudi stack

The remainder of this chapter will explore the format details, showcasing the
structure of a Hudi table on storage and explaining the roles of different files.

Storage Format
Figure 1-2 depicts a typical data layout of a Hudi table under the table's base path
in storage.

Apache Hudi: From Zero to One 4

Figure 1-2: A typical data layout of a Hudi table

There are two main types of files:�
� Metadata files, located in <base_path>/.hoodie�
� Data files, which are stored within partition paths for partitioned tables, or

under the base path for non-partitioned tables

Timeline
A Hudi timeline is an important type of metadata which records transactional
actions for a Hudi table. The timeline metadata files contain information about the
changes that should be applied to the table and those that have already been
applied.

Keeping these transaction logs makes it possible to recreate the table's state at
any point, achieve snapshot isolation, and reconcile writer conflicts through
concurrency control mechanisms.

Chapter 1: A First Glance at Hudi's Storage Format 5

The timeline metadata files follow this naming pattern:

<action timestamp>.<action type>[.<action state>]

Each field in the file-naming pattern is described as follows�
� The <action timestamp> marks when an action was first scheduled to run and

uniquely identifies an action in the timeline. It increases monotonically across
different actions in a timeline�

� The <action type> shows what kind of changes were made by the action. The
following are common action types (additional action types will be discussed
in more detail in future chapters)�

� Write actions, such as .commit and .deltacommit, indicate new write
operations (INSERT, UPDATE, or DELETE) that occurred on the table�

� Table service actions, such as compaction and clea�
� Recovery actions, such as savepoint and restore�

� The <action state> indicates the status of the action, which can be requested,
inflight, or completed (without a suffix). As the names suggest, requested
indicates being scheduled to run, inflight means execution is in progress, and
completed means that the action is done.

Here's an example logging .deltacommit actions in timeline metadata files:

20230827233828740.deltacommit.requested
20230827233828740.deltacommit.inflight

20230827233828740.deltacommit

Other Metadata Files
Alongside the table's timeline metadata files, there are additional files and
directories under the .hoodie/ directory. Examples include, but are not limited to�

� The hoodie.properties file, which contains essential table configurations, such
as table name and version, which are used by both writers and readers of the
tabl�

� The metadata/ directory, which contains additional metadata related to
timeline actions, and serves as an index for readers and writers�

� The .heartbeat/ directory, which stores files for heartbeat managemen�
� The .aux/ directory, reserved for various auxiliary purposes such as storing

checkpoint metadata

Chapter 1: A First Glance at Hudi's Storage Format 6

Data
Hudi categorizes physical data files into two categories, base files and log files,
which are optimized for write vs. read�

� Base files contain the main records in a Hudi table, are optimized for reads, and
are typically formatted as columnar files (e.g., Apache Parquet)�

� Log files contain record changes for an associated base file, are optimized for
writes, and are typically formatted as row-based files (e.g., Apache Avro).

Within a partition path of a Hudi table (as shown in the previous layout diagram),
a single base file and any associated log files are grouped together as a file slice.
Multiple file slices constitute a file group. File slice and file group are logical
concepts designed to enclose physical files, simplifying access and manipulation
for both writers and readers.

Each file slice is tied to a specific timeline actions timestamp, and the file slices
within a file group track how the contained records evolved over time, allowing
Hudi to support versioning across commit actions.

Table Types
Hudi defines two table types, copy-on-write (CoW) and merge-on-read (MoR)�

� CoW tables store data in columnar format, and each update creates a new file
version during a write. CoW is the default storage type�

� MoR tables store data using a combination of columnar and row-based
formats. Updates are logged to row-based delta files and are compacted to
create new versions of the columnar files. Throughout this chapter, we have
been using MoR as the example.

CoW can be treated as a special case of MoR, where records in a base file and
associated changes are implicitly merged into a new base file during each write
operation. Unlike MoR, CoW has no log file, and write operations result in .commit
actions instead of .deltacommit.

When selecting a table type, consider your read and write patterns:�
� CoW is well suited for read-heavy, analytical workloads or small tables. It has

high write amplification due to rewriting records in the new file slices for every
write, while read operations will always be optimized. �

� MoR is best for larger tables with relatively frequent upserts. MoR has low write
amplification because changes are buffered in log files and batch-processed
to merge and create new file slices. However, read latency is increased,
because inflight merging of log files with the base file is required for reading the
latest records.

Chapter 1: A First Glance at Hudi's Storage Format 7

Users may also opt to only read base files of an MoR table to obtain efficiency
while sacrificing result freshness. We'll discuss Hudi's different read modes in
subsequent chapters. As the Hudi project evolves, the merging costs associated
with reading from MoR tables have been optimized across releases. It is
foreseeable that MoR will become the preferred table type for most workload
scenarios.

Recap
In this chapter, we introduced Hudi as a comprehensive lakehouse platform
offering features across various dimensions. We explored the fundamentals of
Hudi's storage format to show how data is structured within Hudi tables. We also
briefly explained the different table types and their trade-offs.

Chapter 1: A First Glance at Hudi's Storage Format 8

Chapter 2:

Read Operation Flow and Query Types

We'll now explore how read operations work in Hudi.

There are several analytical query engines integrated with Hudi, such as Spark,
Presto, and Trino. Although the integration APIs may differ, the fundamental
process in distributed query engines remains consistent. In general, the process is�

�� Interpret the input SQ�
�� Create a query plan for execution on worker node�
�� Collect the results to return to users

We’re going to use Spark as the example engine to illustrate the flow of read
operations and provide code snippets to showcase the usage of various Hudi
query types.

In the next section, we'll introduce Spark queries with a primer, delve into Hudi-
Spark integration points, and explain the different query types.

Spark Query Primer
Spark SQL is a distributed SQL
engine that performs
analytical tasks for large-
scale data. A typical
analytics query begins with
user-provided SQL, aiming to
retrieve results from a table
on storage. Spark SQL then
takes this input and
proceeds through several
steps, as depicted in Figure
2-1.

Figure 2-1: Spark SQL query planning flow

There are three distinct steps�
�� During the analysis step, the input is parsed, resolved, and converted into a tree

structure that works as an abstraction of the SQL statement. The table catalog
is consulted for information, such as table names and column types.

Apache Hudi: From Zero to One 9

�� In the logical optimization step, the tree is evaluated and optimized at the
logical layer. Some common optimizations include predicate pushdown,
schema pruning, and null propagation. This step generates a logical plan that
outlines the necessary computations for the query, but which lacks the
specifics needed for running on actual nodes�

�� Physical planning serves as the bridge between the logical layer and the
physical layer. A physical plan specifies the precise manner in which
computations will be executed. For instance, in a logical plan, there may be a
join node indicating a join operation, whereas in the physical plan, the join
operation could be specified as a sort-merge join or a broadcast-hash join,
depending on size estimates from the relevant tables. The highest-rated
physical plan is selected for code generation and execution.

The three phases are features provided by the To learn more
about the Catalyst optimizer, see the videos,

 and

Catalyst optimizer.
A Deep Dive into Spark SQL's Catalyst

Optimizer with Yin Huai A Deep Dive into Query Execution Engine of Spark SQL -
Maryann Xue.

During execution, a Spark application operates on a foundational data structure
called a resilient distributed dataset (RDD). RDDs are collections of Java virtual
machine (JVM) objects that are immutable, partitioned across nodes, and fault-
tolerant, due to the tracking of data lineage information. As the application runs,
the planned computations are performed, and RDDs are transformed and acted
upon to produce results. This process is commonly referred to as materializing the
RDDs.

Data Source API
While the Catalyst optimizer handles the formulation of query plans, the Spark
Data Source API connects to the data source, enabling optimizations to be pushed
down. The API is designed to integrate with a wide range of data sources. Some
data sources, such as JDBC, Hive tables, and Parquet files, are supported out-of-
the-box. Hudi tables, due to their specific data layout, qualify as a custom data
source.

Spark-Hudi Read Flow
In this section, we'll describe the Spake-Hudi read flow. Figure 2-2 illustrates key
interfaces and method calls in the Spark-Hudi read flow common to all Hudi query
types with Spark:

Chapter 2: Read Operation Flow and Query Types 10

https://www.databricks.com/glossary/catalyst-optimizer
https://www.youtube.com/watch?v=RmUn5vHlevc
https://www.youtube.com/watch?v=RmUn5vHlevc
https://www.youtube.com/watch?v=ywPuZ_WrHT0
https://www.youtube.com/watch?v=ywPuZ_WrHT0

Figure 2-2: The Spark-Hudi read operations data flow

Here's a high-level overview of the process:
1.

2.

3.

4.

5.

6.

7.

DefaultSource serves as the entry point of the integration, defining the data
source's format as org.apache.hudi or hudi. It provides a BaseRelation, which
Hudi uses to implement the data extraction process.

buildScan() is a core API to pass filters to data sources for optimizations. Hudi
defines collectFileSplits() for gathering relevant files.

collectFileSplits() passes all the filters to a FileIndex object that helps identify
the necessary files to read.

FileIndex locates all the relevant file slices for further processing.

composeRDD() is invoked after file slices are identified.

File slices are loaded and read out as RDDs. For columnar files, such as base
files in Parquet, this read operation minimizes the transferred bytes by reading
only the necessary columns.

RDDs are returned from the API for further planning and code generation.

Please note that this is a high-level overview of the read flow, omitting details such
as support for schema-on-read and advanced indexing techniques, such as data
skipping using a metadata table.

Chapter 2: Read Operation Flow and Query Types 11

In the following sections, we'll discuss how various query types work. All types,
except for read-optimized queries, are applicable to both CoW and MoR tables.

Snapshot Query
A snapshot query is the default query type when reading Hudi tables. It retrieves
the latest records from the table, capturing a snapshot of the table at the time of
the query. When a snapshot query is performed on an MoR table, log files must be
merged with the base file to complete the query, which causes some degree of
impact on performance.

The following example SQL query shows how to set up an MoR table, with one
record inserted and updated after launching a spark-sql shell with Hudi as a
dependency:

create table hudi_mor_example (

 id int,

 name string,

 price double,

 ts bigint

) using hudi

tblproperties (

 type = 'mor',

 primaryKey = 'id',

 preCombineField = 'ts'

) location '/tmp/hudi_mor_example';

set hoodie.spark.sql.insert.into.operation=UPSERT;

insert into hudi_mor_example select 1, 'foo', 10, 1000;

insert into hudi_mor_example select 1, 'foo', 20, 2000;

insert into hudi_mor_example select 1, 'foo', 30, 3000;

The next example shows a snapshot query that will retrieve the latest value of the
record by running a SELECT statement:

spark-sql> select id, name, price, ts from hudi_mor_example;

1 foo 30.0 3000

Time taken: 0.161 seconds, Fetched 1 row(s)

Chapter 2: Read Operation Flow and Query Types 12

Read-Optimized Query
Read-optimized queries (RO) are designed specifically for use with MoR tables, as
they have lower read latency, but with potentially older results. When conducting
queries such as collectFileSplits(), an RO query will fetch only base files for file
slices.

In the previous snapshot query code example, the code automatically
generates a catalog table named hudi_mor_example_ro, which specifies a
property hoodie.query.as.ro.table=true. This property instructs query engines
to always perform RO queries.

Running the following SELECT statement returns the original value of the record,
because subsequent updates have not yet been applied to the base file.

spark-sql> select id, name, price, ts from hudi_mor_example_ro;

1 foo 10.0 1000

Time taken: 0.114 seconds, Fetched 1 row(s)

Time Travel Query
A time travel query allows users to request a historical snapshot of a Hudi table by
providing the appropriate timestamp. As previously discussed in Chapter 1, file
slices are associated with specific commit times and, therefore, support filtering. In
a time travel query, the file index only locates the file slices that correspond to the
specified time. If there is no exact match, the query returns the closest matches
that are older than the specified time.

Here's an example of a time travel query:

spark-sql> select id, name, price, ts from hudi_mor_example timestamp as
of '20230905221619987';

1 foo 30.0 3000

Time taken: 0.274 seconds, Fetched 1 row(s)

spark-sql> select id, name, price, ts from hudi_mor_example timestamp as
of '20230905221619986';

1 foo 20.0 2000

Time taken: 0.241 seconds, Fetched 1 row(s)

Chapter 2: Read Operation Flow and Query Types 13

In the first example, the SELECT statement executes a time travel query at the
.deltacommit time of the latest insert, providing the most recent snapshot of the
table. In the second example, the query sets a timestamp earlier than that of the
latest insert, resulting in a snapshot as of the second-to-last insert.

The timestamp in each example follows the Hudi timeline's format of
yyyyMMddHHmmssSSS. However, the timestamp can also be formatted as yyyy-
MM-dd HH:mm:ss.SSS or yyyy-MM-dd.

Incremental Query
With an incremental query, users can retrieve changed records within a specified
time window. The time window is specified with a starting timestamp and an
optional ending timestamp. (If no ending timestamp is set, the window returned
will include all records since the starting timestamp.) Hudi also offers full change
data capture (CDC) capabilities by enabling additional logs on the writer's side
and activating CDC mode for incremental reads. See Chapter 8 for more
information.

Recap
In this chapter, we provided an overview of Spark's Catalyst optimizer, explored
how Hudi implements the Spark Data Source API for reading data, and introduced
four distinct Hudi query types.

Chapter 2: Read Operation Flow and Query Types 14

Chapter 3:

Understanding Write Flows and Operations

We'll now delve into write flows, with Spark as the example engine. When it comes
to writing data to Hudi, there are numerous customizable configurations and
settings. Therefore, this chapter does not aim to serve as a complete usage guide.

Instead, the primary goal is to describe internal data flows and break down the
steps involved during a write operation. This will provide readers with a deeper
understanding of running and fine-tuning Hudi applications. For practical usage
examples, see .Hudi's docs

Write Operation Flow
The following diagram illustrates the typical high-level steps involved in a Hudi
write operation within the context of an execution engine. A Hudi write operation
involves several high-level steps, as illustrated in Figure 3-1.

Figure 3-1: Hudi write operation data flow

Apache Hudi: From Zero to One 15

https://hudi.apache.org/docs/overview

1. Create write client
A Hudi write client serves as the entry point for write operations, and Hudi write
support is achieved by creating an engine-compatible write client instance. For
example, Spark uses the SparkRDDWriteClient, Flink employs the
HoodieFlinkWriteClient, and Kafka Connect generates the HoodieJavaWriteClient.
Typically, this step involves reconciling user-provided configurations with the
existing Hudi table properties, then passing the final configuration set to the client.

2. Transform input
Before a write client processes the input data, several transformations occur,
including the construction of a HoodieRecord (see Figure 3-2), which is a
fundamental model in write paths, and schema reconciliation.

Figure 3-2: The structure of a Hudi record

Hudi identifies unique records using the HoodieKey model, which consists of
recordKey and partitionPath. These values are populated by implementing the
KeyGenerator API. This API offers flexibility in extracting and transforming custom
fields into HoodieKey based on the input schema. For usage examples, see

.
the

docs

Both currentLocation and newLocation are composed of a Hudi timeline's action
timestamp and a file group's ID. Recalling the logical file group and file slice
concepts from Chapter 1, the timestamp points to a file slice within a specific file
group. The location properties are employed to locate physical files using logical
information. If currentLocation is not null, it indicates where a record with the
same key exists in the table, while newLocation specifies where the incoming
record should be written.

Chapter 3: Understanding Write Flows and Operations 16

https://hudi.apache.org/docs/key_generation/
https://hudi.apache.org/docs/key_generation/

The data field is a generic type that contains the actual bytes for the record, also
known as the payload. Typically, this property implements HoodieRecordPayload,
which guides engines on how to merge an old record with a new one. Starting
from , a new experimental interface, HoodieRecordMerger, has been
introduced to replace HoodieRecordPayload and serve as the unified merging API.

release 0.13.0

3. Start commit

At this step, a write client checks if there are any failed actions remaining in the
table's timeline, and performs a rollback accordingly, before initiating the write
operation by creating a "requested" commit action.

4. Prepare records

The provided HoodieRecords may optionally undergo deduplication and indexing
based on the user configurations and the operation type. If deduplication is
necessary, records with the same key will be merged into a single record. If
indexing is required, the currentLocation will be populated if the record exists.
There's a lot more to say about indexing logic, but for the purposes of
understanding writer flows, it is important to remember that an index is
responsible for locating physical files for the given records.

5. Partition records

This essential pre-write step determines which record goes into which file group
and, ultimately, which physical file. Incoming records will be assigned to "update"
buckets and "insert" buckets, implying different strategies for subsequent file
writing. Each bucket represents one RDD partition for distributed processing, as is
the case with Spark.

6. Write to storage

This is when the actual I/O operations occur. Physical data files are either created
or appended to using file writing handles. Before that, marker files may also be
created in the .hoodie/.temp/ directory to indicate the type of write operation that
will be performed for the corresponding data files. This is valuable for efficient
rollback and conflict resolution scenarios.

Chapter 3: Understanding Write Flows and Operations 17

https://hudi.apache.org/releases/release-0.13.0#optimizing-record-payload-handling

7. Update index

After data is written to disk, there may be a need to immediately update the index
data to ensure read and write correctness. This applies specifically to index types
that are not synchronously updated during writing, such as the HBase index
hosted in an HBase server.

8. Commit changes

In this final step, the write client will undertake multiple tasks to correctly conclude
the transactional write. For example, it may run pre-commit validation if
configured, check for conflicts with concurrent writers, save commit metadata to
the timeline, reconcile WriteStatus with marker files, and so on.

Write Operations
In this section, we'll delve into the UPSERT flow for a CoW table in detail, followed by
a brief overview of all other supported write operations.

UPSERT

In a Hudi UPSERT, records are first tagged as inserts or updates and optimized for
storage before being written. Figure 3-3 describes the Hudi UPSERT flow for a CoW
table:

Chapter 3: Understanding Write Flows and Operations 18

Figure 3-3: The UPSERT flow for a Hudi CoW table

An UPSERT to a Hudi CoW table involves the following steps�
�� The write client starts the commit and creates the "requested" action in the

timeline�
�� Input records undergo the preparation step, in which duplicates are merged

and target file locations are populated by the index. At this point in the process,
we have the exact records to be written, and we know which of those exist in
the table, along with their respective locations (i.e., file groups).

Chapter 3: Understanding Write Flows and Operations 19

�� Prepared records are categorized into "update" and "insert" buckets. Initially, a
WorkloadProfile is constructed to gather information on the number of
updates and inserts in the relevant physical partitions. This data is then
serialized into an "inflight" action in the timeline. Subsequently, based on the
WorkloadProfile, buckets are generated to hold the records. For updates, each
file group is assigned as an update bucket. In the case of inserts, any base file
smaller than a specified threshold (determined by
hoodie.parquet.small.file.limit) becomes a candidate for accommodating the
inserts, with its enclosing file group being designated as an update bucket. If no
such base file exists, "insert" buckets will be allocated, and new file groups will
be created for them later�

�� The bucketized records are then processed through file writing handles for
actual persistence to storage. In the case of records in the "update" buckets,
"merge" handles are used, resulting in the creation of new file slices within the
existing file groups (achieved by merging with data from the old file slices). For
records in the "insert" buckets, "create" handles are utilized, leading to the
creation of entirely new file groups. This process is done by HoodieExecutors,
which employ a producer-consumer pattern for reading and writing records�

�� Once all data is written, the file writing handles return collections of WriteStatus
that contain metadata about the writes, including the number of errors, the
number of inserts performed, the total written size in bytes, and more. This
information is sent back to the Spark driver for aggregation. If no errors have
occurred, the write client will generate commit metadata and persist it to
indicate a completed action in the timeline.

An UPSERT to an MoR table follows a very similar process, with a different set of
conditions to determine the types of file-writing handles used for updates and
inserts.

INSERT
The INSERT flow is very similar to UPSERT, with the key difference being the
absence of an indexing step. This implies that the entire INSERT process is faster
than UPSERT, especially if deduplication is turned off. However, this may result in
duplicates in the table, causing data files to be larger than they need to be.

Chapter 3: Understanding Write Flows and Operations 20

BULK_INSERT

BULK_INSERT follows the same semantics as INSERT, meaning it can also result in
duplicates, due to the absence of indexing. Overall, BULK_INSERT is generally more
performant than INSERT, but may require additional configuration tuning to
address small-file issues. The records partitioning strategy is determined in one of
two ways�

� Setting BulkInsertSortMod�
� Implementing BulkInsertPartitioner for customization

By default for Spark, BULK_INSERT also enables row-writing mode, bypassing Avro
data model conversion at the input transformation step and working directly with
the engine-native data model Row. This supports even more efficient writes.

DELETE

The DELETE operation can be viewed as a special case of UPSERT. The primary
difference is that, during the input transformation step, input records are
transformed into HoodieKeys and passed on to subsequent stages, as these are
the minimum required data for identifying the records to be deleted. It's important
to note that this process results in a hard delete, meaning that the target records
will not exist in the new file slices of the corresponding file groups.

DELETE_PARTITION

DELETE_PARTITION follows a completely different flow compared to the
operations previously introduced, including DELETE. Instead of input records,
DELETE_PARTITION takes a list of physical partition paths, which is configured via
hoodie.datasource.write.partitions.to.delete. Because there are no input
records, processes such as indexing, partitioning, and writing to storage do not
apply. DELETE_PARTITION saves all file group IDs for the target partition paths in
a .replacecommit action in the timeline, ensuring that subsequent writers and
readers treat them as deleted.

INSERT_OVERWRITE

INSERT_OVERWRITE completely rewrites partitions with the provided records. This
flow can be effectively seen as a combination of DELETE_PARTITION and
BULK_INSERT; it extracts affected partition paths from the input records, marks all
existing file groups in those partitions as deleted, and creates new file groups to
store the incoming records.

Chapter 3: Understanding Write Flows and Operations 21

INSERT_OVERWRITE_TABLE

INSERT_OVERWRITE_TABLE is a variation of INSERT_OVERWRITE. Instead of
extracting affected partition paths from input records, it fetches all partition paths
of the table for the purpose of overwriting.

Recap
In this chapter, we explored the high-level steps of Hudi write operations, using an
UPSERT to a CoW table as the main example, and discussed other available write
operations.

Chapter 3: Understanding Write Flows and Operations 22

Chapter 4:

All about Writer Indexes
We'll now discuss one of the most crucial steps in the Hudi write process in detail:
indexing. Indexing verifies the existence of records in the table and helps achieve
efficient update and delete operations. This chapter will introduce the writer
indexing APIs, and explore various types of indexes and their internal flows. Please
note that the indexes covered in this chapter are intended for writers, not for
readers.

Indexing APIs
Writer-indexing abstractions are defined in HoodieIndex. Some key APIs involved
in indexing are�
� tagLocation(): This API is invoked when a set of input records is passed to the

index component during writing. The API tags each record, determining
whether it is present in the table, and then associates it with its location
information. The resulting set of records is referred to as tagged records. In the
HoodieRecord model introduced in Chapter 3, the currentLocation field is
populated by this tagging process�

� updateLocation(): After data is written to storage, updateLocation() provides
certain indexes with required location information to be updated to synchronize
with the data table. This process is only executed during the post-I/O phase for
those applicable index types�

� isGlobal(): Hudi categorizes indexes into global and non-global types. Global
indexes identify unique records across all table partitions, and are therefore
global in relation to the table. Non-global indexes, on the other hand, validate
uniqueness at the partition level. Typically, non-global indexes exhibit better
performance due to their smaller scan space. However, they are not suitable
for tables with records that can shift between partitions. This API determines if
an index is global or not�

� canIndexLogFiles(): Due to the implementation specifics, certain indexes are
able to index on log files for MoR tables. This characteristic affects how writers
create file-writing handles; when this is true for the configured index, inserts will
be routed to log files through AppendHandle()�

� isImplicitWithStorage(): This API indicates whether the index is implicitly
persisted along with data files on storage. Some indexes store their indexing
data separately.

Apache Hudi: From Zero to One 23

Index Types
Hudi offers several out-of-the-box index types to support different traffic patterns
and table sizes. Selecting the most appropriate index for each table is a crucial
tuning step. In the following sections, we'll describe various writer index types and
their internal workings, to further enhance understanding of when and how to use
these indexes.

Simple Index

The simple index is a non-global index that serves as the default type, and is
shown in Figure 4-1. A simple index scans all base files within the relevant
partitions to determine whether incoming records match any of the extracted
keys. Since the simple indexes tend to load all base files at either the partition level
or the table level, they are well suited for traffic patterns having random or evenly-
distributed data access.

Figure 4-1: The flow of a Hudi simple index

Chapter 4: All about Writer Indexes 24

From the left-join operation, if an input record matches an extracted key, the join
result will include the location information, which will then be used to populate the
currentLocation field of the HoodieRecord. This produces the tagged records
previously described. A union operation is performed on unmatched records and
tagged records for further processing.

Global Simple Index
The simple index has a global version known as the global simple index, which
matches input against base files from all partitions, rather than just the relevant
ones. When a record's partition value is updated, the respective file group is
loaded, including log files for MoR tables. As an additional tagging step, this index
merges the incoming record with its pre-existing version and tags the merged
result to the location in the new partition.

Bloom Index
The Bloom index follows a similar high-level flow to the simple index (see Figure
4-2). However, the distinguishing concept behind the Bloom index lies in its
approach to minimizing the number of keys and files for look-ups while
maintaining a low read cost.

Figure 4-2: The flow of a Hudi Bloom index

Chapter 4: All about Writer Indexes 25

The Bloom index employs two-stage filtering to reduce the number of keys and
files for look-ups�

� First stage: Input keys are compared to an interval tree constructed using
minimum and maximum record key values stored in base file footers. Keys
falling out of these ranges represent new inserts, while the remaining keys are
considered candidates for the next stage�

� Second stage: This stage checks the candidate keys against deserialized
Bloom filters, which help determine the definitively absent keys and the
potentially present keys. Actual file look-ups are then carried out using the
filtered keys and the associated base files. The result returns the key and
location tuples for tagging.

Note that the filtering process before the look-ups only involves reading the file
footers, thereby incurring low read costs.

Global Bloom Index

Just like the simple index, the Bloom index also has a global version known as the
global Bloom index. It operates similarly to the non-global version, albeit at the
table level, and it employs the same logic as the global simple index for handling
partition-update scenarios.

Bucket Index

The bucket index maps a key to a file group using a fixed hashing function,
eliminating the need for disk reads and resulting in significant time savings.

The bucket index comes in two variations�
� Simple bucket index: This index assigns a fixed number of buckets, each

mapping to one file group, which in turn limits the total number of file groups in
the table. This leads to limitations on handling data skewness and scaling out�

� Consistent-hashing bucket index: This index is designed to overcome the
drawbacks of the simple bucket index by dynamically rehashing an existing
bucket into sub-buckets when the corresponding file group exceeds a certain
size threshold.

HBase Index

The HBase index is a global index implemented using an external HBase server. It
stores the mappings between a record key and the relevant file group information.
This index offers efficient look-ups for tagging and can readily scale out as the
table size increases. However, one drawback of this index is the operational
overhead involved in managing an additional server.

Chapter 4: All about Writer Indexes 26

Record-level Index

The record-level index, available since release 0.14.0, is logically similar to the
HBase index. Like the HBase index, it is also a global index that saves the mappings
of record keys and file groups. The key difference is that the record index keeps the
indexing data local to the Hudi tables, thus avoiding the cost of operating an extra
server. To learn more, see .this Hudi blog post

Recap
In this chapter, we discussed Hudi indexing APIs for writers, delved into the detailed
flows of the simple index and the Bloom index, and briefly introduced the bucket
index, the HBase index, and the record-level index.

Chapter 4: All about Writer Indexes 27

https://hudi.apache.org/blog/2023/11/01/record-level-index

Chapter 5:

Introducing Table Services - Compaction,
Cleaning, and Indexing
Now that we’ve delved into the details of read and write, we'll discuss table
services. We'll first introduce high-level concepts, then cover three specific table
services: compaction, cleaning, and indexing.

Overview
Table services are a type of maintenance job that operates on a table without
adding new data. When ingesting new records, we often prioritize low latency,
which may lead to trade-offs such as extra copies of records, resulting in sub-
optimized storage. Table service jobs improve storage layout, paving the way for
more efficient read and write processes.

In general, a table service job consists of two steps:�
�� Scheduling: This step generates an execution plan that defines changes to be

made to the table�
�� Execution: This step carries out the execution plan and makes the actual

changes to the table.

Hudi table services can
operate in three modes:
inline, semi-async, and
full-async (see Figure
5-1). Each mode provides
different functionality for
flexibility for various real-
world scenarios.

Figure 5-1: The scheduling and execution strategies of
Hudi table services

Apache Hudi: From Zero to One 28

Different modes use different strategies for scheduling and execution, with various
trade-offs and benefits�

� Inline mode: In this mode, both the "schedule" and "execute" steps occur
synchronously after the writer commits; hence, the use of the term "inline." This
requires the simplest operational effort, as the two steps are automatically
executed in sequence within the existing writer process. However, as a trade-
off, significant latency may be introduced to the writing process�

� Semi-async mode: This mode maintains inline scheduling, but separates
execution. In other words, the execution step is asynchronous to the writer
process. In this mode, users have the flexibility to deploy the service runner as a
separate job or even to a different cluster, which might be necessary due to
high computational requirements of the service execution�

� Full-async mode: This mode is the most flexible, as it decouples table services
from write processes. This is particularly helpful in managing a large number of
tables in a lakehouse project, where a dedicated scheduler can be employed
to optimize both scheduling and execution.

Table Services
As of release 0.15.0, Hudi offers four table services: clustering, compaction,
cleaning, and indexing. In the following sections, we'll explore three of these
services: compaction, cleaning, and indexing. Clustering will be discussed in
Chapter 6.

Compaction
Recall from Chapter 1 that CoW tables create a new base file automatically on
writes, so there is no need for a separate compaction process. But for MoR tables,
the file slice evolves by adding log files alongside the base file; this makes writes
faster, but slows performance on reads. (Because the reader has to examine log
files as well as the base file in determining the result.) MoR tables require a
separate compaction step to merge log files into the then-existing base file,
creating a new base file in the process.

Compaction jobs can be quite resource-intensive due to the high write
amplification that occurs when re-writing base files, so it's important to run them
during less-busy periods where possible. In addition to file compaction, there is
also an experimental table service, log compaction. This feature was initially
introduced in release 0.13.0 to address the write-amplification issue by only
compacting log files into larger ones.

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing 29

There are quite a few configuration options to manage when scheduling and
executing compaction. The provides detailed examples that
showcase the usage. In this chapter, our focus is on the generalized internal
workflow, as illustrated in Figure 5-2.

documentation

Figure 5-2: The Hudi compaction workflow

Compaction scheduling and execution occurs as follows�
�� The scheduling step determines whether compaction is necessary based on

the configurable CompactionTriggerStrategy. If deemed necessary, this step
generates a compaction plan and saves it to the timeline as a
.compaction.requested action. Users can set the triggering threshold based on
factors such as number of commits or elapsed time. If the criteria are met, a
compaction plan generator will scan the table based on the
CompactionStrategy, which essentially controls which file slices should be
compacted. This produces a CompactionOperation for each file slice to
formulate a plan.

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing 30

https://hudi.apache.org/docs/compaction/

�� The execution step loads the serialized CompactionOperations from the plan
and runs them in parallel. Depending on the presence of the base file in the
target file slice, either MergeHandle or CreateHandle will be used to write the
merged records in a new file slice. Similar to a write process, a group of
WriteStatus objects will be returned, reporting statistics collected during the
execution, and a .commit action will be saved in the timeline, marking the
success of the compaction.

Users may also monitor performance vs. table write and read load and manually
initiate compactions before triggers are reached, reducing the odds that users will
be affected significantly by having a compaction operation occurring at a busy
time.

Cleaning

For incoming data, Hudi tables continually add file slices to represent newer
versions, taking more disk space. Cleaning is the table service designed to reclaim
storage space by deleting old and unwanted versions, as illustrated in Figure 5-3.

Figure 5-3: The Hudi cleaning workflow

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing 31

The scheduling and execution steps are as follows:

Similar to compaction, Hudi uses CleaningTriggerStrategy to determine if
cleaning is required at the time of scheduling, where the specified number of
commits is the trigger criteria. After the configured threshold for number of
commits is reached, a cleaning planner will scan relevant partitions and
determine if any file slice meets the criteria for cleaning, as defined by
HoodieCleaningPolicy. Physical paths of either base files or log files from the
eligible file slices will be used to generate a group of CleanFileInfo. A cleaning plan
is then formulated based on that and saved into a .clean.requested action.

At this time, three cleaning policies are supported: clean-by-commits, clean-by-
file-versions, and clean-by-hours. During the execution step, the job performs
file-system deletes for the target files in parallel after loading the plan and
deserializing the CleanFileInfo. Statistics are initially collected at the partition level,
and then aggregated and saved into a .clean action, indicating process
completion.

For more detailed usage information, see the .cleaning documentation

Indexing

The indexing table service, initially added in release 0.11.0 as an experimental
feature, is designed for building indexes for the . In this section,
we'll provide a brief overview of the design. For a deeper technical dive into the
indexing process, see the , , and .

metadata table

docs this Onehouse blog post RFC-45

Recall the indexing API updateLocation() described in Chapter 4. This API is
required by certain indexes to keep the indexing data in sync with the written data.
From a table service perspective, we can view this API as an indexing operation
running in inline mode; in other words, the scheduling and execution steps are
performed inline. The current indexing service can be considered to run in full-
async mode.

The metadata table can be seen as another index type that encompasses
multiple indexes, also known as a multi-modal index. As the data table size grows,
updating the metadata table inline with each write can be time-consuming.
Therefore, we need the async table service to maintain high write-throughput,
while keeping the indexes current.

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing 32

https://hudi.apache.org/docs/hoodie_cleaner/
https://hudi.apache.org/docs/metadata
https://hudi.apache.org/docs/metadata_indexing
https://www.onehouse.ai/blog/asynchronous-indexing-using-hudi
https://github.com/apache/hudi/blob/master/rfc/rfc-45/rfc-45.md

Recap
In this chapter, we introduced the general concept of table services, and we
discussed three of them: compaction, cleaning, and indexing. The other table
service, clustering, will be discussed in the next chapter.

Chapter 5: Introducing Table Services - Compaction, Cleaning, and Indexing 33

Chapter 6:

Demystifying Clustering and Space-Filling
Curves
We’ll now explore the concept of proximity, focusing on clustering techniques and
layout strategies to improve read efficiency. Using the analogy of a 2D plane and
the mathematical determination of proximity, we'll establish a foundation for
understanding its implications in multidimensional datasets. By illuminating the
intricate interplay between proximity, clustering, layout optimization, and query
performance, this chapter provides essential insights into enhancing data storage
efficiency and query performance.

Proximity Explained
To illustrate the concept of proximity, we'll use the analogy of a 2D plane with X
and Y axes to represent a dataset. In this analogy, if the dataset's schema has two
columns, X and Y, records are considered to have close proximity when the
coordinate pairs (X, Y) are close to each other on the 2D plane. However, in
practice, a complex and/or wide schema with numerous columns will require
more dimensions to be added. While visualizing high-dimensional spaces is
challenging for 3D beings like ourselves, proximity in higher-dimensional spaces
can still be determined mathematically, allowing computers to process the
information.

Clustering, in the context of data storage, stands as a valuable optimization
technique to improve the storage layout by preserving data locality for better
read efficiency. The three main motivations for clustering are as follows�

� Clustering improves query performance, especially when low-latency, high-
throughput writes result in too many small files being created. Clustering
consolidates and rewrites these small files into larger ones, which can
effectively address the issue, especially when clustering is executed
asynchronously to writing�

� Clustered records tend to show better alignment with file-level statistics such
as column minimum and maximum values. During the process of rewriting
data files, proximate records are more likely to be clustered in the same files,
allowing data files to be skipped more effectively based on given predicates�

� Clustered data exhibits good spatial locality, and can therefore use a block
cache, as with HDFS, to increase hit rate, resulting in faster reads.

Apache Hudi: From Zero to One 34

Clustering Workflow
Similar to other table services mentioned in Chapter 5, clustering can be run in three
modes: inline (hoodie.clustering.inline), semi-async (hoodie.clustering.schedule.inline),
and full-async (hoodie.clustering.async.enabled). For further information on how to
configure these flags, see the .docs

As clustering involves rewriting data, a .replacecommit will be generated upon the
completion of the table service job, indicating that the eligible file groups have
been rewritten into new ones. The clustering workflow, consisting of scheduling
and execution, is illustrated in Figure 6-1.

Figure 6-1: The Hudi clustering workflow

Chapter 6: Demystifying Clustering and Space-Filling Curves 35

https://hudi.apache.org/docs/configurations

The clustering workflow is similar to the compaction workflow, with the following
steps�

�� During the scheduling phase, eligible partitions and file slices are selected
based on ClusteringPlanStrategy. Users have the flexibility to define partition
patterns to target specific partitions using regular expressions. Within these
partitions, file slices meeting certain criteria (not currently undergoing
compaction, not qualifying as small files, etc.) are added to
HoodieClusteringGroups. These entities store information about the input and
output for subsequent clustering execution. Typically, HoodieClusteringGroup
adheres to size limits, such as the maximum total bytes of file slices to include
for rewriting. The total number of HoodieClusteringGroups is also capped by
default, preventing unintentional submission of resource-intensive clustering
jobs�

�� The steps for the execution phase of clustering are as follows�
�� Deserialize the clustering plan�
�� Load the designated input file slices�
�� Merge the loaded records�
�� Bulk insert the merged records to new file groups�
�� Report write statistics through the returned WriteStatus.

Users can customize the execution step by supplying their own implementation of
ClusteringExecutionStrategy. By default, each HoodieClusteringGroup defined in
a clustering plan will be submitted as a separate job to perform parallel rewriting
of file slices.

By default, for file groups undergoing a clustering process, writers will fail if
updates or deletes on those file groups are intended. However, in the case of
running table services, failing writes may not be ideal. Other pluggable strategies
exist that allow updates to proceed, followed by resolving conflicts or enforcing
dual writes on both the old and new file groups.

The record proximity mentioned in the chapter overview comes into play at the
bulk insert step, where records are re-partitioned and sorted according to
hoodie.layout.optimize.strategy. We'll describe this in detail in the next section.

Layout Optimization Strategies
Hudi offers three layout optimization strategies: linear, Z-order, and Hilbert. Each of
these defines how records should be sorted during bulk insert. The default strategy
is linear optimization, which performs . The other two
optimization strategies, Z-order and Hilbert, are known as space-filling curves
because they sort and preserve good spatial locality.

lexicographical sorting

Chapter 6: Demystifying Clustering and Space-Filling Curves 36

https://en.wikipedia.org/wiki/Lexicographic_order

The linear strategy is highly effective for datasets in which record proximity relies
on just one column. For instance, consider a table containing transaction records
with a timestamp column. Analysts often run queries to fetch all records between
transaction time A and transaction time B. Given that the records are considered
proximally close as long as the transaction timestamps are close, linear sorting by
the timestamp is a perfect strategy to preserve locality.

However, the linear strategy may not perform well with datasets that require two
or more columns to determine record proximity. For example, consider a house
inventory dataset with columns for latitude and longitude. Lexicographical sorting
of latitude followed by longitude would group geographically distant house
records together simply based on the proximity of latitude. In such cases, sorting
algorithms that are capable of handling N-dimensional records are needed. This
is where Z-order and Hilbert optimization strategies can be applied.

The mathematical term space-filling curve describes a curve that traverses a
space, intersecting with all possible points in that space and thereby filling it
entirely. Once the curve is straightened, all the multi-dimensional points are
mapped to a one-dimensional space and assigned a single-value coordinate.
Among the various curve-drawing methods, Z-order and Hilbert, as shown in
Figure 6-2, are two approaches that can effectively preserve spatial locality
through this mapping, as the majority of nearby points on the curve are also close
to each other in the original space.

Figure 6-2: Z-order and Hilbert curves in a two-dimensional space (with thanks to
)

the
image's creator

Chapter 6: Demystifying Clustering and Space-Filling Curves 37

https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html
https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html

When we treat records as multi-dimensional points, drawing a Z-order or Hilbert
curve defines an optimal way to sort them. Given that spatial locality is well
preserved, nearby records are more likely to be stored in the same files. This fulfills
the proximity condition and enhances read efficiency.

Recap
In this chapter, we described table service clustering techniques and their pivotal
role in optimizing data storage for efficient reads. By exploring the concept of
proximity and its significance within multidimensional datasets, we've provided
valuable insights into the clustering workflow and the utilization of space-filling
curves for enhanced storage layout. Through these discussions, readers are
equipped with essential knowledge to leverage clustering methods and layout
optimization strategies, and to thereby improve data retrieval efficiency and query
performance.

Chapter 6: Demystifying Clustering and Space-Filling Curves 38

Chapter 7:

Run Writers and Table Services Concurrently
With the knowledge gained in previous chapters, we'll now discuss concurrency
control, focusing specifically on managing concurrency for writers and table
services.

A Primer on Concurrency Control
Every commit to a Hudi table is a transaction, whether it involves adding new data
or executing a table service job. Concurrency control is the practice of
orchestrating concurrently executed transactions to ensure correctness and
consistency while maintaining optimal performance. This primer aims to offer just
enough information to provide the needed context for subsequent sections that
delve into Hudi's implementation of concurrency control. To learn more about this
complex topic, see and . this course this paper

In databases, atomicity, consistency, isolation, and durability (ACID), depicted in
Figure 7-1, are the four essential properties required to maintain the integrity and
reliability of transactions.

Figure 7-1: The ACID principles of database design

Apache Hudi: From Zero to One 39

https://15445.courses.cs.cmu.edu/fall2023/
https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf

Each property is focused on a particular aspect of transaction integrity and
reliability�

� Atomicity requires that each transaction be treated as an indivisible unit of
work; this implies that any changes made by the transaction should be rolled
back in the event of a failure partway through an operation.�

� Consistency is concerned with application-specific constraints. For example, a
primary key field cannot have duplicates, or the product price column must be
non-negative.�

� Isolation ensures that concurrent transactions are isolated from each other,
resulting in changes being made as if they are executed sequentially. If the
Isolation property is not honored, concurrent transactions will incur read and
write anomalies, such as dirty reads and writes, lost updates, and more. While
enforcing a strictly serial execution of all transactions can eliminate the
anomalies, this severely impacts performance, rendering the system
practically unusable; hence, isolation is key�

� Durability mandates the preservation of committed data on storage, ensuring
resilience against incidents such as hardware failures.

With these principles in mind, we should allow for concurrent execution for
performance, and coordinate the results of execution so they are the same as
would have resulted from performing the steps serially. In other words, what we
need is a serializable schedule. Figure 7-2 depicts a serializable schedule for three
transactions.

Figure 7-2: Execution of a serializable schedule for three transactions

Chapter 7: Run Writers and Table Services Concurrently 40

Common strategies for enforcing serializable schedules in various database
systems are multi-version concurrency control (MVCC) and optimistic
concurrency control (OCC). MVCC keeps multiple record versions on storage and
associates them with monotonically increasing transaction IDs (i.e., timestamps).
OCC "optimistically" allows concurrent transactions to proceed on their own and
resolves any conflicts later. Initially, Hudi adopted MVCC for the handling of a
single writer with concurrent table services without locking. In later releases, an
OCC implementation was added to support multi-writer scenarios. In the
upcoming sections, we'll explore how Hudi employs these strategies in dealing
with concurrent writers and table services.

MVCC in Hudi
The timeline and file slices serve as the foundation to Hudi's MVCC
implementation. The timeline uses monotonically increasing commit start times to
keep track of transactions to the table. File slices handle record versioning and
correspond to transaction timestamps. One layer above, Hudi constructs a view
object, TableFileSystemView, which provides API calls to return the table's most
recent storage states. Examples include the latest file slices under a partition path
and file groups that undergo clustering.

Writers and readers always consult the table file system view to decide where to
perform the actual I/O operations. This design, shown in Figure 7-3, provides read-
write isolation, as the new data writing does not interfere with readers accessing
past versions.

Figure 7-3: Using MVCC, Hudi table services run concurrently with a writer

Chapter 7: Run Writers and Table Services Concurrently 41

When a write operation is in progress, a commit action indicating this write will be
marked as "requested" or "inflight" in the timeline. This ensures that the table file
system view is aware of the ongoing action, and that table service planners do not
include the file slices currently being written for subsequent execution. This logic
also holds true in the scenario of concurrent table service jobs. Hudi's table
services are idempotent operations, because the plans containing information
about which file slices to read are persisted. Therefore, retries in the event of failure
won't impact the final result.

While a compaction operation is ongoing, any new write to the MoR table would
either route new records to new file groups, or append updates and/or deletes to
log files. As such, the base file that the compaction job is producing will be
excluded by the view to prevent misuse. When clustering is pending, users can
configure the writer's behavior to handle the updating of a file group that
undergoes clustering. Possible behaviors include aborting the write, rolling back
the clustering, deferring to later conflict resolution processes such as OCC, or
performing dual-write operations to the source and target clustering file groups.
Cleaning is always executed in a way that retains the latest file slices, keeping the
deletes clear of new writes.

OCC in Hudi
An OCC protocol typically comprises three steps: read, validation, and write�

� In the read step, concurrent writers perform the necessary I/O operations to
complete their work in isolation.�

� The validation step collects the list of changes from each writer and
determines if any conflicts exist.�

� Lastly, during the write step, all changes are accepted if no conflicts are found.
If conflicts arise, the changes from the writer with the later transaction time are
rolled back.

This process is analogous to the GitHub workflow, where contributors can submit
pull requests to the upstream repository. In GitHub, merging will be blocked for pull
requests that have conflicts, similar to the validation phase in OCC.

As concurrent updates could lead to write anomalies, Hudi implements OCC with
file-level granularity to handle multi-writer scenarios, as shown in Figure 7-4. To
enable this feature, users need to set hoodie.write.concurrency.mode to
OPTIMISTIC_CONCURRENCY_CONTROL and configure a lock provider accordingly.
OCC is integrated into Hudi's write flow.

Chapter 7: Run Writers and Table Services Concurrently 42

Figure 7-4: The use of OCC in a Hudi write operation with two write clients

The key steps are as follows�
� Write client 1 is writing t1.commit and is first to acquire a lock from the lock

provider, which is usually implemented using an external server such as
Zookeeper, Hive Metastore, or DynamoDB�

� While holding the lock, write client 1 checks the timeline to see if any concurrent
commits have been completed before its own attempt. In this example, the
t2.commit by write client 2 is the only candidate timeline to check against. As
it's still in flight, write client 1 can proceed to commit and release the lock�

� Write client 2 writes t2.commit and acquires the lock after client 1 releases it. In
the pre-commit phase, the files changed by client 2, obtained from
WriteStatus, conflict with the files changed by client 1, derived from t1.commit.
Consequently, client 2 will abort the write.

Aborted writes will be rolled back, implying the deletion of all the written files, both
for data and metadata, as if the writes never occurred. While this process fulfills
the atomicity requirement, it could also be wasteful, particularly when the conflict
chances are high. As such, Hudi offers an early conflict detection mode for OCC. In
this mode, before the actual files are written, lightweight marker files are created
in a temporary folder. These markers serve as a preliminary step for conflict
checking. For a detailed explanation of the design and implementation of early
conflict detection, see .this talk on YouTube

Chapter 7: Run Writers and Table Services Concurrently 43

https://www.youtube.com/watch?v=sgfMdeD-yk4

Recap
In this chapter, we provided a brief overview of concurrency control and delved
into the specifics of how Hudi implements concurrency control, specifically
discussing MVCC and OCC.

Chapter 7: Run Writers and Table Services Concurrently 44

Chapter 8:

Read and Process Incrementally
Building off of our overview of concurrency control mechanisms in Hudi, we now
turn our attention to another crucial aspect of Hudi's functionality: incremental
processing. We'll begin by providing a short overview of the incremental
processing architecture before delving into two key features of incremental
processing, the incremental query and change data capture (CDC). Through this
exploration, we aim to provide a comprehensive understanding of how Hudi
enables efficient and scalable incremental data processing workflows.

Overview
Incremental processing involves the extraction, loading, and transformation (ELT)
of data subsets to maintain up-to-date results. This technique has become
standard in constructing data pipelines for data lakehouses. Unlike traditional
methods, which often require complete data snapshots or costly join operations,
modern data lakehouses employ storage formats that support incremental
processing, simplifying architecture.

Hudi adopts the , which consists of three layers: unchanged
bronze tables for reprocessing needs, silver tables for data quality assurance, and
gold tables for delivering business value (see Figure 8-1).

medallion architecture

Figure 8-1: The medallion architecture that processes application data and empowers AI & BI

Apache Hudi: From Zero to One 45

https://www.onehouse.ai/glossary/medallion-architecture

In the next sections, we'll discuss how Hudi achieves incremental processing,
which is well-suited to supporting a robust implementation of the medallion
architecture.

Incremental Query
Hudi effectively tracks changes in the form of transaction logs by persisting
commit metadata within the timeline, thereby facilitating incremental processing
- which, in most cases, relies on timestamp-based checkpointing. Hudi's
incremental query feature is enabled through the following configurations:

hoodie.datasource.query.type=incremental
hoodie.datasource.read.begin.instanttime=202305150000
hoodie.datasource.read.end.instanttime=202305160000 # optional

These configurations allow for the retrieval of data that has changed within a
defined time window. For more usage examples, see the . A few things to note
about the behaviors�

� Setting hoodie.datasource.read.begin.instanttime=0 effectively requests all
changes made to the table from the very beginning of its history�

� Omitting hoodie.datasource.read.end.instanttime results in fetching the
changes up to the most recent completed commit in the table�

� The data returned by incremental queries contains records that were updated
during the specified time window. These records are matched to their versions
corresponding to the latest completed commit in the table. If
hoodie.datasource.read.end.instanttime is set, the records will align with the
commit denoted by this specified end time�

� When the beginning time is set to zero and the end time is omitted, the
incremental query effectively becomes equivalent to a snapshot query,
retrieving all the most recent records in the table.

docs

Now that we have an understanding of the behavior of incremental queries, we
can delve into the details. Figure 8-2 shows the workflow involved in fetching
incremental data from a Hudi MoR table.

Chapter 8: Read and Process Incrementally 46

https://hudi.apache.org/docs/quick-start-guide/#incremental-query

Figure 8-2: Fetching incremental data from a Hudi MoR table

Incremental queries follow the read flow as depicted in Chapter 2, implementing
two internal APIs, collectFileSplits() and composeRDD(). The implementation
consists of these steps�
� collectFileSplits() is responsible for identifying all files relevant to the query.

This function derives start and end timestamps, based on user input, to define
a specific time range. This time range is then used to filter commits in the
timeline�

� Hudi's timeline, comprising a series of transaction logs, represents the changes
made over time. With a specified time range, it becomes straightforward to
filter down to the relevant files needed for the composeRDD() function to
process�

� In a Hudi table, each record includes the field _hoodie_commit_time, which
links the record to a specific commit in the timeline. During the process of
loading target files for records, incremental queries construct a commit time
filter to further minimize the amount of data read. This filter is pushed to the
level of file reading, allowing composeRDD() to be optimized to load only those
records that are intended to be returned.

Chapter 8: Read and Process Incrementally 47

Change Data Capture
Incremental queries effectively reveal which records have been changed, as well
as their final states. However, they don't provide specific details about the nature
of these changes. For instance, if record X is identified as having been modified,
the incremental query doesn't clarify its column values prior to the update, or
whether it was a newly inserted record. Additionally, it doesn't indicate if any
records were hard-deleted. To address these limitations, Hudi 0.13.0 introduced

. This enhanced format of incremental processing provides a more
comprehensive view of data modifications, including inserts, updates, and deletes,
thereby enabling a clearer understanding of the changes within the dataset.

CDC

To enable the CDC functionality, set hoodie.table.cdc.enabled=true. Writers
writing to the table will honor this setting and activate the process of creating CDC
log files alongside base files. Thanks to Hudi's file grouping mechanism, these CDC
log files are included in the same file groups that hold the changed data. This
makes it easy to extend table services like cleaning, facilitate recovery operations
like restore, and manage both CDC log files and data files together for easier file
management.

To pull the CDC data, users simply need to set the incremental format to CDC
when performing incremental queries. Time-range related behaviors still apply to
the CDC query format. These are the necessary configurations:

hoodie.datasource.query.type=incremental
hoodie.datasource.query.incremental.format=cdc
hoodie.datasource.read.begin.instanttime=202305150000
hoodie.datasource.read.end.instanttime=202305160000 # optional

Figure 8-3 provides an overview
of how writers and readers
interact with CDC files and
data.

Figure 8-3: How Hudi writers and readers interact
with CDC files and data

Chapter 8: Read and Process Incrementally 48

https://github.com/apache/hudi/blob/master/rfc/rfc-51/rfc-51.md

The general steps depicted in the diagram are described below�
�� On the writer side, Hudi's write handle holds the information about the intended

operations for the writing records (INSERT, UPDATE, or DELETE).�
�� This information is then encoded into a specific CDC log file format, containing

four fields, as shown in the diagram. The nullable before and after fields store
the complete record snapshot before and after the change. Users have the
flexibility to reduce the volume of logged data by adjusting
hoodie.table.cdc.supplemental.logging.mode. Specifically, use DATA_BEFORE
to skip the after field, or set OP_KEY_ONLY to store record keys instead of
before and after fields�

�� On the reader side, CDC log files are loaded to construct the results, following a
process similar to that of normal incremental queries, whose incremental
format is called latest_state. If both before and after fields are logged, the
results will be directly extracted from the CDC log files. If a less verbose logging
mode is used, the results will be computed on the fly by looking up existing
records in the table. This is essentially a trade-off between saving storage
space and the efficiency of running CDC queries.

Richer Insights
The introduction of CDC greatly enhances Hudi's capabilities, supporting a wider
range of scenarios and offering valuable insights. For example, consider an
account balance subject to frequent debit and credit transactions. Without CDC,
periodic snapshot queries or the latest_state incremental queries might miss
critical fluctuations. With CDC queries, all account changes are revealed, offering
a comprehensive view of the account's activities. As such, this level of detail is
essential to fraud detection algorithms.

Recap
In this chapter, we provided a concise introduction to incremental processing and
to the , followed by an in-depth exploration of Hudi's
approach to incremental queries and CDC, and their significance in deriving
valuable business insights.

medallion architecture

Chapter 8: Read and Process Incrementally 49

https://www.onehouse.ai/glossary/medallion-architecture

Chapter 9:

Hudi Streamer, a Swiss Army Knife for
Ingestion

Over the course of the last eight chapters, we've explored a variety of Hudi topics
related to internal mechanisms, including storage layout, read and write
operations, indexing, table services, and concurrency control mechanisms. We'll
now shift our focus to Hudi Streamer, a comprehensive data ingestion tool
designed for deploying production-grade pipelines for Hudi tables. Given its
versatility, a topic we'll delve into further within this chapter, Hudi Streamer is
frequently described as a "Swiss Army Knife" for the importation of data into
lakehouses.

Overview
Hudi Streamer is a Spark application designed to offer a wide range of
customizable interfaces for managing the write process to Hudi tables. It enables
users to configure source data, define schemas, schedule table services, keep
data catalogs in sync, and so on. Figure 9-1 illustrates Hudi Streamer's workflow
and components as part of an ingestion pipeline.

Figure 9-1: Hudi Streamer's workflow and components as part of an ingestion pipeline

Apache Hudi: From Zero to One 50

Typically, ingestion pipelines are configured step-by-step by users. The setup
process can be made much simpler by using the rich set of options that Hudi
Streamer makes available. The key to mastering this tool is to understand what
the options are meant for and how to configure each option properly. Here's an
overview of various commonly-used options�

� The --table-type (CoW or MoR), --table-name (for identifying the table), and
--target-base-path (physical location of the table) are three required
properties for writing to a Hudi table�

� The --continuous flag indicates whether Hudi Streamer should operate in an
ongoing manner or execute one step at a time. If the flag is present, the
application will keep fetching source data and writing to storage in a loop
("continuous" mode), which is ideal when there is a steady stream of data from
upstream sources. Without the flag, Hudi Streamer performs one-time data
fetching and writing before terminating ("run-once" mode), which is ideal for
batch or bootstrap (creating a new Hudi table using data from existing
storage) use cases.�

� The --min-sync-interval-seconds flag works with "continuous" mode,
specifying the shortest allowable interval, in seconds, between ingestion cycles.
For instance, if an ingestion operation requires 40 seconds to complete, and
the min-sync-interval is configured to 60 seconds, Hudi Streamer will pause for
20 seconds before initiating the subsequent ingestion cycle. This pause ensures
that the interval adheres to the minimum set duration. Conversely, if the
ingestion duration extends to 70 seconds, surpassing the minimum interval, the
application immediately proceeds to the next cycle without delay. This
functionality is crucial for ensuring that sufficient data accumulates at the
upstream source for processing, thereby preventing the inefficiency of
handling numerous small-scale writes�

� The --op flag represents the type of operation to be executed by Hudi
Streamer, which serves as another Hudi writer. This flag supports UPSERT
(default), INSERT, and BULK_INSERT. For an overview of write operations, please
revisit Chapter 3�

� The --filter-dupes flag corresponds to the write client configuration
hoodie.combine.before.insert=false|true. This setting allows users to pre-
combine records by keys within the incoming batch, effectively reducing the
amount of data to process. The flag is applicable when the write operation is
set to INSERT or BULK_INSERT. However, it should not be present when --op is
set to UPSERT, to avoid losing potential updates before merging them with on-
storage versions.

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion 51

� The --props and --hoodie-conf flags offer flexible ways to ingest arbitrary
Hudi properties. The former flag points to a file containing a collection of
properties, and the latter accepts a single configuration in the format of
key=value. Properties specified via --hoodie-conf take precedence over those
provided via --props.

In the following sections, we'll delve into the major components depicted in the
workflow diagram.

Source
Source is an abstraction for providing upstream source data for Hudi Streamer. Its
primary responsibility is the fetching of data from the source system as an input
batch for processing and writing. By extending the Source abstract class, Hudi
Streamer can seamlessly integrate with a wide range of data systems. Designed
with a platform vision from day one, Hudi currently offers more than a dozen off-
the-shelf Source integrations, as shown in Figure 9-2.

Figure 9-2: Hudi Streamer source integrations

To use a source for Hudi Streamer, set --source-class to the fully qualified class
name of the source, and configure source-specific properties where applicable.
For example, suppose you wish to use KafkaSource as the Hudi Streamer source.
In this case, hoodie.streamer.source.kafka.topic is the fully qualified name.
Additionally, setting a --source-limit for the KafkaSource sets an upper limit on
the data amount to read during each fetch, enhancing control over the ingestion
process. For more information, see the .Hudi Streamer Source Configs docs

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion 52

https://hudi.apache.org/docs/configurations#DELTA_STREAMER_SOURCE

Transformer
Upon retrieving incoming data from the source, the transformer interface
performs lightweight transformations, such as adding or dropping specific
columns or flattening the schema. The transformer processes a Spark dataset and
outputs the transformed version of the dataset, enabling seamless data
manipulation to meet the requirements of the ingestion pipeline.

The --transformer-class option takes in one or many class names of transformer
implementations. When multiple transformers are given, they are applied
sequentially. In other words, the output of one transformer serves as the input for
the next. This chained approach provides flexibility and facilitates code
maintenance.

Table Service Runner
Table services, as described in Chapter 5, can be managed by Hudi Streamer
alongside data writing operations. When configured as async, compaction and
clustering will be scheduled inline by the Hudi write client internal to Hudi Streamer
and will be executed asynchronously by HoodieAsyncTableService, which uses a
thread pool to submit and control table service jobs.

While async table service jobs are running, it might not always be desirable to
write new data. For instance, the same cluster that is executing the table services
may not have enough resources to perform ingestion. Furthermore, it's advisable
to avoid running too many concurrent compaction or clustering jobs to prevent
resource contention. Use --max-pending-compactions and --max-pending-
clustering to limit the outstanding table service operations; when the limits are
reached, no new ingestion job will be scheduled until at least one has been
completed.

When running ingestion jobs and table service jobs concurrently within the same
Spark application, it's crucial to appropriately allocate the cluster's resources to
ensure optimal performance and efficiency. Hudi Streamer facilitates this by
enabling users to input scheduling configurations through specific options. These
configurations play a key role in managing how resources are distributed between
the ingestion, compaction, and clustering processes.

For ingestion�
� --delta-sync-scheduling-weigh�
� --delta-sync-scheduling-minshare

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion 53

For compaction�
� --compact-scheduling-weigh�
� --compact-scheduling-minshare

For clustering�
� --cluster-scheduling-weigh�
� --cluster-scheduling-minshare

The properties shown will be used to generate an XML file, which is then referenced
by the Spark property spark.scheduler.allocation.file. To activate these settings,
users should set spark.scheduler.mode=FAIR for the Spark application. For further
explanation on the scheduling mechanism, please consult the .Spark docs

Catalog Sync Tools
Data catalogs play a crucial role in the data ecosystem, and Hudi supports multi-
catalog sync via the SyncTool classes. Hudi Streamer can integrate with
SyncTools through the --sync-tool-classes option, which takes in a list of
SyncTool class names. Here are the various class names:

for AWS Glue Data Catalog

org.apache.hudi.aws.sync.AwsGlueCatalogSyncTool

for Google BigQuery

org.apache.hudi.gcp.bigquery.BigQuerySyncTool

for Hive Metastore

org.apache.hudi.hive.HiveSyncTool

for DataHub

org.apache.hudi.sync.datahub.DataHubSyncTool

After each write, if the catalog sync is enabled using the --enable-sync flag, each
of the configured SyncTools will run synchronously in sequence to upload
metadata to the target data catalog. For example, if the write operation created
some new partitions and added a new column to the table, the
AwsGlueCatalogSyncTool will update the partition list and the schema stored in
the catalog table.

For SyncTools to function properly, users should supply additional properties
through the --props or --hoodie-conf options. For configuration details, see

.
the

docs

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion 54

https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
https://hudi.apache.org/docs/configurations#META_SYNC
https://hudi.apache.org/docs/configurations#META_SYNC

Schema Provider
The schema provider, specified through --schemaprovider-class, serves the
schema for reading from the source and writing to the target table. A notable
implementation of this is the SchemaRegistryProvider, which enables Hudi
Streamer to access Kafka's schema registry, ensuring that data ingested from
Kafka is accurately interpreted and processed.

Additional Features
In addition to the features described in previous sections, Hudi Streamer supports
other useful features, such as the following�

� The --checkpoint and --initial-checkpoint-provider flags support pausing
and resuming data fetching from the Source, avoiding data loss or duplication�

� The --post-write-termination-strategy-class flag allows for a graceful
shutdown of Hudi Streamer running in "continuous" mode�

� The --run-bootstrap flag instructs the Hudi Streamer to perform a one-time
bootstrap operation for a new Hudi table.

Recap
In this chapter, we explored the major components of the Hudi Streamer workflow
and its diverse options.

Chapter 9: Hudi Streamer, a Swiss Army Knife for Ingestion 55

Chapter 10:

Becoming "One" - The Upcoming 1.0
Highlights

Throughout the book, we've explored Hudi concepts relevant to 0.x versions. In this
final chapter, we'll explore the future of Hudi and delve into the exciting new
features in the upcoming 1.0 release, highlighting enhancements - such as the
LSM tree timeline and the functional index - which significantly improve data
lakehouse management and efficiency, providing a more database-like
experience on the data lake.

Recap: The Hudi Stack
Before we discuss Hudi 1.0, we'll review the Hudi stack, as shown in Figure 10-1 - a
framework that remains unchanged across 0.x and 1.x versions. Recall that the
Hudi stack sits on top of storage systems, executing read and write operations
against open file formats. It is structured into three layers: the transactional
database, the programming API, and the user interface.

S

Figure 10-1: A review of the Hudi stack

Apache Hudi: From Zero to One 56

The transactional database layer is the core of Hudi. It has several key
components, which work together to create a database-like experience with Hudi
lakehouses:�

� The table format, which defines the storage layou�
� Table services, which keep the table optimize�
� Indexes, which speed up reads and write�
� Concurrency control, which supports the isolation principl�
� The lake cache, which elevates read efficienc�
� The metaserver, which centralizes metadata access

The programming API layer introduces writer and reader interfaces, standardizing
integration with other execution and query engines such as Spark. These APIs
empower users to fully harness Hudi's advanced capabilities, such as efficient
upserts and incremental processing.

The final layer, the user interface, provides robust tooling for adopting Hudi and
building comprehensive lakehouse solutions. This tooling can be broken into two
categories�

� Platform services, which include ingestion utilities, catalog sync tools, and
admin CL�

� Query engines such as Spark, Flink, Presto, and Trino

With Hudi's architecture in mind, we can now begin our discussion of Hudi 1.0 and
the new features it provides.

Release 1.0 Highlights
While the overall Hudi stack remains unchanged in version 1.0, the new release
features redesigns and updates at the table-format level. These changes
enhance overall efficiency and throughput, significantly upgrading Hudi's
lakehouse capabilities.

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 57

LSM Tree Timeline
Recall that the Hudi timeline consists of a series of immutable transaction logs
that record all changes made to a table. In 0.x versions, the volume of transaction
logs in the timeline increases linearly with time, so older logs are archived to
optimize storage use. However, this optimization comes with a tradeoff, which is
increased compute cost when accessing archived logs. In Hudi 1.0, a key design
goal is to support a nearly infinite timeline that balances optimized storage with
efficient access. To achieve this goal, a log-structured merge-tree (LSM tree), a
multi-layered data structure designed for high write throughput, is used to define
the timeline layout for tables in Hudi 1.0, as shown in Figure 10-2.

Figure 10-2: The LSM tree structure for Hudi timeline layout and its data flows

In the LSM tree, the top layer stores transactions as active instants in Avro files.
These capture different states of each transaction, such as requested, in progress,
and completed. Once the total number of Avro files reaches a set threshold, the
files are combined and saved in Parquet format. These Parquet files are then
sorted chronologically and given file names that include time-range data, making
it easier to access the files quickly through manifest files. If the number of these
Parquet files grows too large, they are further compressed into even larger
Parquet files. This compression makes these files highly efficient for queries,
especially when filtering by time range or specific columns, leading to overall
quicker data access while still optimizing for storage.

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 58

Non-Blocking Concurrency Control
In 0.x versions, when a streaming writer is present in a concurrent writing scenario,
contention can arise due to, for example, random updates incurred by running a
separate GDPR delete job. To address this, Hudi 0.x versions support OCC and
MVCC. In an example scenario, using OCC could lead to repeated retries, wasting
precious compute resources. To avoid this problem, Hudi 0.x versions provide early
conflict detection for OCC. MVCC is also available to prevent blocking and retry
behaviors due to contention between streaming writers and table service runners.
In 1.0, Hudi introduces non-blocking concurrency control (NBCC), as shown in
Figure 10-3, to maximize writer throughput for MoR tables.

Figure 10-3: The NBCC workflow

NBCC allows multiple writers to update log files to the same file slice, and it defers
the conflict resolution to the compaction stage. Unlike 0.x versions, log files in 1.0
record the completion time of each commit, as well as the starting time. This
enables proper sorting for log files and helps to determine file slice boundaries.
Merging semantics are applied to the updated records during compaction, based
on a configurable ordering field. To resolve the clock skew issue,
TrueTimeGenerator is implemented, ensuring all writer commits have
monotonically increasing timestamps.

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 59

File Group Reader & Writer

Since the first version, Hudi has used record keys, a design choice that unlocks
significant potential for operations at the record level. Paired with the file group
model, this approach lays the foundation for efficient upserts and look-ups. Hudi
1.0 builds on the design advantages offered by record keys and file groups with
the introduction of file group reader and writer APIs, shown in Figure 10-4.

Figure 10-4: The file group reader and writer API workflow

Hudi 1.0 file group writer APIs use partial updates to reduce the log file sizes,
involving only updated columns and values. By taking advantage of Hudi's
indexing systems, targeted updates are efficiently located and positional
information is encoded alongside the data log blocks. File group reader APIs have
access to minimized log file data and positional information to pinpoint the
updating rows and columns, allowing optimization of a snapshot query against an
un-compacted file slice.

Functional Index

In the 0.x versions, Hudi supports a variety of indexing capabilities, including the
bucket index and record-level index. To enhance flexibility and improve access
speeds, Hudi 1.0 introduces the functional index, shown in Figure 10-5, enabling
faster retrieval methods and incorporating partitioning schemes into the indexing
system.

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 60

Figure 10-5: The flow for using Hudi functional index

We'll illustrate the benefits of the functional index with an example. Consider a
column ts that holds epoch timestamps. Users may want to filter the data by
different time precisions, such as by month or by hour. By building a functional
index on the ts column using the following SQL, effective data-skipping is possible
without the need to physically partition the table by hour, or to add a separate
hour column.

CREATE INDEX ts_hour ON hudi_table USING column_stats(ts)
options(func='hour');

Hudi stores user-created index definitions in a dedicated directory under the
.hoodie/ metadata path. These definitions inform query engines of the available
indexes, supporting more optimized query planning. The index entries are
maintained under separate partitions within the metadata table, which serves as
the indexing subsystem for the enclosing Hudi table. When writers commit
changes, all available functional indexes are updated to reflect these changes,
similar to other enabled indexing features in the metadata table. This ensures
read and write efficiency and up-to-date indexes.

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 61

Recap
In this final chapter, we reviewed the Hudi stack and introduced noteworthy
features set to debut in the upcoming Hudi 1.0 release: the LSM tree timeline, NBCC,
file group read and write APIs, and the functional index. The describes Hudi
1.0 as "...a reimagination of Hudi, as the transactional database for the lake, with
polyglot persistence, raising the level of abstraction and platformization even
higher for Hudi data lakes," marking an exciting evolution in Hudi's capabilities.

1.0 RFC

Chapter 10: Becoming "One" - The Upcoming 1.0 Highlights 62

https://github.com/apache/hudi/blob/master/rfc/rfc-69/rfc-69.md

Conclusion
Over the course of this book, we discussed the core functionalities and features of
Apache Hudi, from storage format to the complexities of handling concurrent
operations and incremental processing. We then discussed the advanced
features of Hudi, such as Hudi Streamer, demonstrating Hudi's versatility in
managing data ingestion pipelines and showcasing its role as an integral tool for
modern data architectures. The final chapter explored the upcoming Hudi version
1.0, describing its groundbreaking features, which promise to revolutionize data
lakehouse architecture. Through practical insights and detailed examples, the
book illustrated Apache Hudi's significance as an indispensable resource for data
professionals aiming to take full advantage of the potential of data lakehouse
solutions.

Apache Hudi: From Zero to One 63

